
Brain-Inspired Placement and Routing for

Neuromorphic Processors

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde

(Dr. sc. UZH ETH Zürich)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich

und der

Eidgenössischen Technischen Hochschule Zürich

von

Vanessa Rodrigues Coelho Leite

aus

Brasilien

Promotionskommission

Prof. Dr. Giacomo Indiveri (Vorsitz)

Dr. Matthew Cook

Dr. Yulia Sandarmiskaya

Prof. Dr. Valerio Mante

Prof. Dr. Eleni Vasilaki

Prof. Dr. Catherine Schuman

Zürich, 2023

"We can’t afford that all of our research is
devoted to the machine, because what we are
trying to learn about isn’t the machine we are
building: it’s the brain."

Misha Mahowald

Abstract

The significant energy costs of Deep Neural Network (DNN) and Artificial Intelligence (AI) al-
gorithms are pushing the development of domain-specific hardware accelerators. Neuromor-
phic processors are a class of AI hardware accelerators that implement computational models of
Spiking Neural Networks (SNNs) adopting in-memory computing strategies and brain-inspired
principles of computation. However, the requirement of SNN hardware accelerators to store the
state of each neuron, combined with their in-memory computing circuit design techniques, leads
to substantial area consumption figures, which limits the sizes and numbers of parameters of the
networks that they can implement.
The current strategy used to support the integration of large SNN models in these accelerators
is to use multi-core architectures. In these architectures, each core either emulates with analog
circuits or simulates with time-multiplexed digital circuits neuro-synaptic arrays. The synaptic
weight matrix and the connectivity routing memory blocks occupy a significant proportion of the
total layout area.
Finding trade-offs to optimize weight-matrix, connectivity, and routing memory structures in
multi-core neuromorphic processors can significantly impact their total chip die area and the size
of the networks they can implement. Following the original neuromorphic engineering approach,
we look at animal brains for inspiration and propose a brain-inspired routing and placement
strategy to reduce memory in multi-core neuromorphic hardware.
In animal brains, computation, and other functions emerge from the interaction of neural ar-
eas. Brain networks express modular, small-world, heavy-tailed characteristics. In small-world
networks, most edges form small, densely connected clusters, while others maintain connections
between these clusters. By restricting the neuromorphic processor to implement small-world
SNNs, we can dramatically reduce the memory required to specify the routing and connectivity
schemes while still supporting a wide range of computations for solving pattern recognition and
signal processing tasks.
Specifically, we show that, by focusing on small-world network connectivity, we can implement
trade-offs that minimize memory consumption requirements while still enabling the design of
SNN architectures that can solve a wide range of relevant "edge-computing" problems, i.e., the
types of sensory-motor processing problems that animals must solve in the real world.
Placing an SNN onto neuromorphic hardware is a mandatory step needed to exploit the advan-
tages of the hardware, and each type of hardware has its own set of tools to make it appealing
to SNN developers, which are often not familiar with the hardware complexities. In this The-
sis, we use a hardware-software co-design approach, where the memory minimization strategies
validated in software lead to routing circuit specifications for new neuromorphic chip designs.
The contributions of this Thesis are two-fold: i) a novel routing architecture designed to sup-
port small-world networks, and ii) a new placement algorithm to provide specifications for new
hardware designs. When developing the placement algorithm, we consider requirements derived
from hardware design choices proposed by the chip designers, which define constraints on the
algorithm. In this way, we optimize software and hardware together.
Our co-design approach reduces the memory necessary to place and route networks that follow a
small-world structure while not limiting the possible applications. Additionally, our placement
algorithm can find optimal solutions for networks that follow our canonical design and can place
deviations from them without diverging too much from the ideal case. The simultaneous design
of a place and route scheme allows us to design a new multi-core SNN chip to handle more
extensive networks with a minimum of memory consumption.

iii

Acknowledgments

During the last four years, every time I was asked, "what do you do?" I proudly would say, "I
am a Ph.D. student in Neuroinformatics", and I knew that shortly after, I would say, "we try to
understand how the brain works and mimic its behavior in a new machine called neuromorphic
hardware". People often would be surprised and impressed: "you must be smart!".
I have never considered myself smart. I have spent a lot of effort and energy to build who I
am today and to acquire the knowledge I have. I consider myself hardworking, privileged, and
amazingly lucky.
It was not because I am smart, nor only because of my efforts, that this Thesis is now complete.
This Thesis is a product of many people that crossed my life.

I will start by saying how grateful I am for the support of my whole family, that even though they
didn’t really understand, they accepted my efforts in moving out from my hometown to do a mas-
ter’s and, later on, to cross the Atlantic for the Ph.D. I am incredibly grateful to my mom, Andrea,
who, in her unique way, always pushed me to study and do better; and for my sis, Brenda, that
held things together back home and gave me the love of my life, Benicio: one more reason to keep
fighting and pursuing my dreams.

It would be naive to believe this journey started when Giacomo accepted me into the ZNZ pro-
gram. In fact, it started when my bachelor’s Professors told me I could do more and gave me
support to do so. I am so grateful to all my former professors, especially Anselmo Paiva, Aristó-
fanes Silva, Carlos de Salles, and Marcelo Gattass. They were keystones for my academic career.
I cannot express how much I value their opinions and all the help I got throughout my Bachelor,
Master, and even Ph.D.

I need to thank all my Brazilian friends, either in Zurich or back in Brazil, who helped me feel
that home was not that far. Thank you so much, Friedrich Garcez, Isadora Martins, Camila Silva,
Humberto Victor, Adriano Reis, Taniel Martins, Bethania Souza, Mariana Gliesh, Fabiola Maffra
(and Lucas e Mia), Eliana Goldner, Paula Rodrigues, Eduarda Morsch, Priscilla Matos, and Lais
Guimaraes for making my days brighter in this cloudy, cold and grey city.

Working between two groups at the Institute of Neuroinformatics (INI) has been tremendous,
and INI has become a second home for me. Thank you to everyone at INI, everyone who gave me
insightful feedback after lab meeting talks, Journal Clubs, the admin team, and all my colleagues
from the Neuromorphic Cognitive Systems and the Cookies, in particular to Julia Buhmann, Nils
Eckstein, Moritz Milde, Ethan Palmiere, Xander Nedergaard, Melika Pavyland, Mohammad Ali,
Matteo Cartiglia, Alpha Renner, and Carsten Nielsen. Thank you to Zhe Su, Junren Chen, and
Adrian Whatley for the close discussions and all the help with this Thesis.
Many, many thanks in particular to the people that welcome me in their private lives: Karlita
Burelo, Nicoletta Risi, Raphaela Kreiser, Renate Krause, Giorgia Dellaferrera, Arianna Rubino,
Matilde Tristany, Dmitrii Zendrikov, Lucas Pompe, Gala Sanchez, Tavo Siller, Luca Zuccarini
(and Braska!), Marco Eppenberger, and Andrea Magazzini. I could not be more grateful to get to
know you all, and I genuinely appreciate your friendship and all the hugs and love.
Thank you to all the people involved, directly or indirectly, for providing me with feedback and
support. Thank you to Vanessa Machado, Roberto Azevedo, and the EU grant.

I have no words to say thanks to Matthew Cook. Matthew was by my side since my first steps
in Switzerland. He cried with me when I faced problems; he helped me to find solutions when

v

I could not see one anymore. He advised me not only in my projects and this Thesis but also in
my personal life and helped me to create a sense of future. Thank you, Matt, for all the beers and
gin tonics we had together, for bringing me gin and marshmallows when we elected the worst
president in Brazilian history. Thank you for breaking down my stressful moments and making
me go away for a bit when I needed to but could not see it. Thank you for always being available
when I needed to vent out and complain about nothing and everything. I wish everyone could
have a Matthew in their lives.

And, finally, my biggest and deepest gratitude to Giacomo Indiveri. Giacomo has been the best
supervisor I never could dream of. I am immensely grateful for the opportunity, the project, all
the pieces of advice, and his patience and support. Not only he guided me in this academic ca-
reer, but he also supported me in fighting for gender equality and opened paths for what is yet to
come. It was his support that allowed me to have a voice and to feel empowered and confident.
And even with his limited time, he always managed to find space for me, my complaints, and my
doubts. Sorry, not sorry, Giacomo, for all the TikToks, and I can only hope that one day I will be
as inspiring to others as you are to me.

All-in-all, I cannot pretend I had no fears or to see this time with rose-tinted glasses. However, I
cannot deny this incredible feeling of gratitude. This Ph.D. has been quite a journey. It is not only
about all the knowledge and academic formation I got. It is, and I dare to say in its biggest part,
about all the people I had around throughout these years. You all have been with me through the
highs and lows; your support got me through, made me keep going, and brought me here today.

During these years, I have loved and been loved; I have read and written, traveled and made a
home; I have thought and dreamed, learned and taught; I have laughed and cried, I fought and
quietened down; I have built my own way and accepted known paths; I made friends and changed
who I am.

These Ph.D. years have been, in themselves, an enormous privilege and my biggest adventure. I
know I have complained. Nevertheless, I will miss every single bit of it.

vi

Agradecimentos

Durante os últimos quatro anos, sempre que alguém me perguntava "o que você faz?", eu cheia
de orgulho respondia "sou doutoranda em neuroinformática". E eu sabia que logo depois eu
diria "a gente tenta entender como o cérebro funciona pra reproduzir esse comportamento em
um tipo especial de computador chamado hardware neuromórfico". As pessoas geralmente ficam
surpresas e impressionadas: "nossa, você deve ser muito inteligente!".
Eu nunca me considerei inteligente. Eu me esforcei bastante pra ser quem eu sou hoje, e pra ter
todo o conhecimento que tenho. Eu me considero muito esforçada, privilegiada e incrivelmente
sortuda.
Não é por que eu sou inteligente, ou exclusivamente por meus esforços que hoje essa tese é com-
pleta. Essa tese é resultado do apoio de muitas pessoas que passaram pela minha vida.

Quero começar dizendo como sou grata por todo o apoio de toda a minha família que mesmo
sem realmente entender, aceitaram meus esforços em sair de São Luís pra fazer meu mestrado no
Rio; e, depois, de cruzar o Atlântico pra fazer o doutorado na Suiça. Sou incrivelmente grata pela
minha mãe, Andréa, que com seu jeitinho único, sempre me incentivou a estudar e ser melhor;
e pela minha mermã, Brenda, que segurou as pontas dentro de casa e me deu o amor da minha
vida, Benicio: uma razão a mais para continuar lutando e correr atrás dos meus sonhos.

Seria ingênuo acreditar que essa jornada se iniciou quando Giacomo me aceitou no programa
de doutorado. De fato, essa jornada começou quando meus antigos professores me disseram
que eu podia fazer mais, e me deram suporte para tanto. Eu sou muito grata aos meus anti-
gos professores, em especial, Anselmo Paiva, Aristófanes Silva, Carlos de Salles, e Marcelo Gat-
tass. Eles foram peças fundamentais na minha carreira academica. Não posso espressar o quanto
eu valorizo as opiniões deles, e toda a ajuda que eles me ofereceram durante meu bacharelado,
mestrado, e até agora no doutorado.

Eu preciso agradecer a todos os meus amigos BRs, que em Zurique ou mesmo no Brasil, me
ajudaram a sentir que minha zona de conforto não estava tão longe. Muito obrigada, Friedrich
Garcez, Isadora Martins, Camila Silva, Humberto Victor, Adriano Reis, Taniel Martins, Bethania
Souza, Mariana Gliesh, Fabiola Maffra (e Lucas e Mia), Eliana Goldner, Paula Rodrigues, Eduarda
Morsch, Priscilla Matos, e Lais Guimarães por iluminarem meus dias nessa cidade nublada, fria
e cinzenta.

Trabalhar em dois grupos no Instituto de Neuroinformática (INI) tem sido maravilhoso, e o INI
se tornou minha segunda casa. Muito obrigada a todos do INI, todo mundo que me deu sugestões
e comentários sobre meu projeto, e como preparar apresentações, ao time da administração, e a
todos os meus colegas, em especial a quem esteve comigo no Grupo de Sistemas Neuromórficos
Cognitivos e no grupo do Matthew Cook: Julia Buhmann, Nils Eckstein, Moritz Milde, Ethan
Palmiere, Xander Nedergaard, Melika Pavyland, Mohammad Ali, Matteo Cartiglia, Alpha Renner,
e Carsten Nielsen. Obrigada Zhe Su, Junren Chen, e Adrian Whatley pelas conversas, ideias e
ajuda direta nessa tese.
Muito, muito obrigada em particular para as pessoas que me receberam em suas vidas: Karlita
Burelo, Nicoletta Risi, Raphaela Kreiser, Renate Krause, Giorgia Dellaferrera, Arianna Rubino,
Matilde Tristany, Dmitrii Zendrikov, Lucas Pompe, Gala Sanchez, Tavo Siller, Luca Zuccarini
(and Braska!), Marco Eppenberger, e Andrea Magazzini. Eu não poderia ser mais feliz em ter
conhecido todos vocês, e eu genuinamente aprecio a amizade, todos os abraços e amor que recebi.
Obrigada a todas as pessoas que, direta ou indiretamente, me deram suporte: Vanessa Machado,

vii

Roberto Azevedo, e minha bolsa da União Européia.

Eu não tenho palavras pra agradecer Matthew Cook. Matthew esteve ao meu lado desde meus
primeiros passos na Suiça. Ele chorou comigo quando eu encontrei problemas; ele me ajudou
a encontrar soluções quando eu não conseguia ver saídas. Ele me aconselhou não apenas nos
meus projetos e nessa tese, mas também na minha vida pessoal, e me ajudou a criar uma sensação
de futuro. Obrigada, Matt, por todas as cervejas e gin tonicas que bebemos, por me trazer gin
e marshmallows quando elegemos o pior presidente da história do Brasil (#elenao). Obrigada
por aliviar meus momentos de estresse e me distrair quando eu precisava mas não conseguia
perceber. Obrigada por sempre estar disponível quando eu precisava colocar pra fora minhas
frustrações e reclamar sobre tudo e qualquer coisa. Seria maravilhoso que todo mundo pudesse
ter um Matthew em suas vidas.

E, finalmente, minha mais profunda gratidão ao Giacomo Indiveri. Giacomo tem sido o melhor
orientador, como eu jamais poderia imaginar. Eu sou imensamente grata pela oportunidade, pelo
projeto, por todos os conselhos, pela paciência, e pelo apoio. Não apenas ele me guiou nessa
jornada acadêmica, mas também me apoiou quando lutei por igualdade de gênero, e ele abriu
caminhos para o que ainda está por vir em minha vida. Foi o apoio dele que me permitiu ter uma
voz, e me sentir empoderada e confiante. E mesmo com a agenda completamente cheia, ele sem-
pre encontrou tempo pra mim, pra minhas reclamações e minhas dúvidas. Sinto muito, mas nem
tanto, por todos os TikToks, e eu só posso desejar que um dia eu seja inspiração para os outros
como você é pra mim.

De modo geral, não posso fingir que não tive medos, nem dizer que o doutorado foi um mar de
rosas. Entretanto, eu não posso negar esse imenso sentimento de gratidão. Esse doutorado tem
sido uma jornada incrível. E não é apenas sobre todo o conhecimento e formação acadêmica que
recebi. É, e eu arrisco dizer na maior parte, sobre todas as pessoas que eu tive ao redor durante
esses anos. Todos vocês estiveram comigo nos bons e maus momentos, e foi o apoio de vocês que
me ajudou a continuar, e que me trouxe até aqui.

Durante esses anos, eu amei e fui amada; eu li e escrevi, viajei e construí um lar; Eu pensei e son-
hei, aprendi e ensinei; Eu ri e chorei, eu lutei e fiquei quieta; Eu andei pelo meu próprio caminho
e aceitei rotas que já eram conhecidas; Eu fiz amigos e mudei quem eu sou.

Esse doutorado foi um enorme privilégio e minha maior aventura. Eu sei que eu reclamei. E
mesmo assim, eu vou sentir falta de cada pedacinho dele.

viii

Contents

Abstract iii

Acknowledgments v

Acronyms xi

1. On brains and computers 3

1.1. Connectivity in the brain . 5
1.2. Connectivity in the neo-cortex . 6
1.3. Connectivity in electronic circuits . 7
1.4. Connectivity in neuromorphic processors . 7

1.4.1. Physical substrate . 8
1.4.2. Creating connections . 9
1.4.3. Selected networks . 9

1.5. Neuromorphic ecosystems . 10
1.5.1. Neuromorphic hardware . 11
1.5.2. Application software . 12
1.5.3. System software . 12

1.6. Thesis overview . 13

2. System software and compilers 17

2.1. Platform-based design . 20
2.2. Hardware-software co-design . 20
2.3. Routing schemes . 21

2.3.1. Source-address routing scheme . 21
2.3.2. Destination-address routing scheme . 23
2.3.3. Mixed-address routing scheme . 23

2.4. Placement approaches . 23
2.4.1. Hardware-aware SNN modeling . 24
2.4.2. Neuromorphic compilers . 24

2.5. Summary . 26

3. Brain-inspired routing 31

3.1. Distance matters . 32
3.2. Synapse types . 34

3.2.1. Local recurrent synapses . 35
3.2.2. Non-local synapses . 35

3.3. Multi-core hierarchical routing mechanism . 35
3.4. Summary . 37

4. Brain-inspired placement algorithm 41

4.1. A canonical network . 41
4.2. The placement algorithm . 41

4.2.1. Neuron placement . 43
4.2.2. Distance calculation . 43
4.2.3. Synapse assignment . 45

4.3. A placement example . 46
4.4. Summary . 50

ix

Contents

5. Results 53

5.1. Memory use analysis . 53
5.1.1. Defining the cost function . 53
5.1.2. Specifying parameters in the area cost function 55
5.1.3. DYNAP area cost function . 60
5.1.4. TrueNorth area cost function . 60
5.1.5. Area comparison . 61
5.1.6. Bits per neuron comparison . 61

5.2. Experiments description . 61
5.2.1. Removing neurons and synapses . 63
5.2.2. Changing network structure . 64

5.3. Placement of a Recurrent Neural Network . 64
5.4. Summary . 68

6. Discussions 73

6.1. General remarks . 73
6.1.1. The future of neuromorphic systems . 74

6.2. Specific considerations and outlook . 75
6.2.1. Other network types . 75
6.2.2. Neuron types . 75
6.2.3. Synapse types . 76
6.2.4. Weights . 76
6.2.5. Optimality . 76
6.2.6. Clustering techniques . 77
6.2.7. Hardware parameters . 77

7. Conclusion 81

A. Survey on Networks and Applications 85

B. System Software - CortexControl 89

C. Xinyue Yao’s MSc thesis 93

x

Acronyms

AER Address-Event Representation

AE Address-Event

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

CAM Content Addressable Memory

CNN Convolutional Neural Network

CPU Central Processing Unit

CTXCTL CortexControl

DNN Deep Neural Network

DPI Differential Pair Integrator

DRAM Dynamic Random Access Memory

DYNAP Dynamic Neuromorphic Asynchronous Processor

FNN Feed-forward Neural Network

GT Ground Truth

GUI Graphical User Interface

H&H Hodgkin & Huxley

I&F Integrate-and-Fire

xi

Contents

INI Institute of Neuroinformatics

LI&F Leak Integrate-and-Fire

ML Machine Learning

MLP Multilayer Perceptron

NCS Neuromorphic Cognitive Systems

NoC Network-on-Chip

PC Personal Computer

RAM Random Access Memory

RNN Recurrent Neural Networks

SNN Spiking Neural Network

SOC System-On-Chip

SRAM Static Random Access Memory

STDP Spike-Timing Dependent Plasticity

TCAM Ternary Content-Addressable Memory

VLSI Very Large Scale Integration

WTA Winner-Take-All

xii

"O-M-G. What am I doing?
shrubba-shrubba."

Vanessa Leite, many times during the last
four years

1. On brains and computers

The comparison between our brains and our computers seems, at first, unfair: give a computer a
complex equation, and you will get an answer within seconds. And in contrast, a human brain
needs significantly more time to perform the same calculation. However, we find in the brain
similar structures to what we design in computers: there is a "Central Processing Unit (CPU)",
a hard drive and Random Access Memory (RAM), a camera with a "computer vision" engine, a
natural language processor, and so on.1 It is, therefore, compelling to see our brains as equivalent
to our computers! Nevertheless, they are different: the brain has evolved to interact with the
environment and help its body survive and reproduce, while computers were created to assist
mathematical systems and perform calculations and computations (Abbate, 1999; Ceruzzi, 2003).
From the first computers, with Turing and von Neumann, to IBM creating the Personal Comput-
ers (PCs) (Abbate, 1999), and the popularization of computers and mobile devices, we adopted
them in our daily lives. This popularization allowed us to use computers as truly versatile ma-
chines instead of hardwired circuitries made for a particular task. Now, computers not only
perform calculations and computations, but they are also used to receive data through their own
sensors, process it, and respond to the environment using AI (Brown et al., 2020; Kato et al., 2015;
Zhang and Tao, 2020). The transformation from calculators to machines interacting with the en-
vironment was only possible through a chain of incredible advances: gradient descent (Amari,
1967; Lemaréchal, 2012), backpropagation (Werbos, 1990; Schmidhuber, 2014), unsupervised
learning algorithms (Dayan, 1999; Erhan et al., 2010; Gütig, 2016), and the development of brain-
inspired networks such as Convolutional Neural Networks (CNNs) (Scherer et al., 2010; Ranzato
and LeCun, 2007), and DNNs (LeCun et al., 2015). All of this, and the acknowledgment that
the hardware is an essential factor in our capacity to make computers learn and that brains and
computers are bounded by physical laws (Schmidhuber, 2022), have led to the development of
more complex processing circuits and our first attempts at mimicking the human brain or human
intelligence.
In recent years, AI has undergone an extraordinary and astonishing revolution. AI has touched
many brain-based cognition and intelligence levels. Nowadays, our computers can beat humans
in games (Koch, 2016; Chen et al., 2018) and can do an impressively good job at complex machine
vision tasks, such as face recognition or digital art. For instance, DALL-E (Ramesh et al., 2022)
can create realistic images and art from a description in natural language, as shown in Fig. 1.1.
However, classical AI algorithms such as DNNs typically use "brute force" approaches to perform
their tasks. Furthermore, they require a vast set of training examples and lots of training cy-
cles. Moreover, adding a single new input to the training demands retraining the models from
scratch (Zhu and Klabjan, 2021). The (re)training of such large models does not come without
a cost. We have seen the cost of training AI models doubling every ∼ 4 months, as shown in
Fig. 1.2, reaching petaflops/s per day, and the power consumption increased 300,000-fold from
2012 to 2018, raising real concerns about energy costs for the world (OpenAI, 2018; Numenta,
2022; Labbe, 2021; Economist, 2020).
Our computers and AI evolved because there are more than 7 billion brains on the planet, and a
portion of them can share knowledge successfully to make science progress. And we have been
working on improving computers and AI for around six decades now.
Besides sharing knowledge, as humans, our brains are marvelous in cognitive and information-
processing tasks, such as object recognition or complex scene analysis and understanding. In-
deed, our AI models can beat us in games and produce excellent results in computer vision tasks.
However, our brains are even more breathtaking: they rely only on a few data, using multiple

1The equivalence is to our frontal cortex, hippocampus, eyes and visual cortex, temporal lobe, and more.

3

4

Figure 1.1.: By only offering a small text and a style of painting, AI can produce impressive re-
sults. This image was generated by inputting "female neuroscientist is mapping a
neural network onto a computer chip digital art" in the DALL-E system (Dayma et al.,
2021).

Figure 1.2.: The amount of computational power used in the largest AI training runs has been
increasing exponentially, doubling every ∼ 4 months. Since 2012, there has been an
increase of more than 300,000x in power consumption. Figure from (OpenAI, 2018).

Chapter 1. On brains and computers 5

modalities combined, and consuming only 20% of our body energy (Clarke and Sokoloff, 1999).
No wonder we have been trying to understand the brain and mimic its behavior!
The history of our attempts to understand the brain is as long as humans’ history. Our first
attempt to investigate how the brain works dates to ancient Egypt (Mohamed, 2008). But with
Ramon y Cajal, we had a revolutionary contribution to understanding the nervous system’s struc-
ture. For the first time, we had printed images of neurons and the knowledge that they were
independent structures that are in touch without touching (Ehrlich, 2022). Since then, neuro-
scientists have studied the nervous system in all its aspects: structure, function, development,
diseases, and more. We have been trying to map a human connectome and other animal brains,
and advances in neuroimaging technologies and machine learning were (and still are) crucial for
that (Morita et al., 2016; Nunes, 2021; Witvliet et al., 2021). These advances allow us to identify
diverse brain structural connectivity patterns that give rise to a wide range of processes.
Despite the tremendous progress in computing, in AI, in neurotechnologies, and theoretical neu-
roscience, we still don’t really know if the brain functions are defining its architecture or if the
architecture of the brain gives rise to specific functions. We understand that computation emerges
from the interaction of neural areas (McCulloch and Pitts, 1943; Gilson et al., 2015; Mill et al.,
2017; Reid et al., 2019; Ito et al., 2020) and that the structural wiring of the brain (either locally
or globally) is highly correlated with the brain function such as memory, vision, and motor con-
trol (Bullmore and Sporns, 2009, 2012; He and Evans, 2010; Kaiser, 2011; Meunier et al., 2010;
van den Heuvel and Sporns, 2013; Lynn and Bassett, 2019).
Still, standard computing technologies do not use the wiring and connectivity patterns that the
brain does. We can recognize in our computers a similar set of high-level structures to what the
brain has, such as cameras and computing vision engines that are equivalent to our eyes and
visual cortex. However, the electronic implementations of such structures are not brain-like.
This gap opened up a new field, neuromorphic engineering, where the development of circuits
that share physical properties with biological nervous systems allowed fewer transistors than
digital approaches to emulating neural systems (Mead and Ismail, 1989). One key characteris-
tic of neuromorphic engineering is to understand how the morphology of individual neurons
and the topology of neural networks affect the representation of information and computation.
And from there, to design brain-like devices and systems that can provide robust and efficient
computation using low-power and massively parallel analog Very Large Scale Integration (VLSI)
circuits (Mead, 1990, 2020).
In this Thesis, following the neuromorphic computing approach, we explore the topology of neu-
ral networks to advance the design of new brain-like devices. We look at biological brains and
propose brain-inspired architectures and strategies to change how to place and route networks on
those devices. We focus on small-world networks, as a pattern of connectivity found not only in
biological neural networks but also in Artificial Neural Networks (ANNs) that perform brain-like
computation.

1.1. Connectivity in the brain

In the brain, we find diverse patterns of structural connectivity. Those different patterns support
a wide range of cognition and behaviors. In a recent review, Lynn and Basset discuss how network
structure relates to function and control, and, at first glance, the wiring of the brain shows itself
far from homogeneous (Lynn and Bassett, 2019). Some aspects of brain networks are already
well-studied and defined. For instance, large-scale functional brain networks express character-
istics of modular, small-world, heavy-tailed, and metabolically constrained organization (Lynn
and Bassett, 2019). In other words, brain networks, or their basic network composition, show a
modular community structure, or cluster of neurons, that are internally densely connected and
externally weakly coupled, with short path length and high clustering (Bullmore and Sporns,
2009; Sporns and Betzel, 2016).
Modular networks give numerous advantages for nervous systems, and the robustness of "evolv-
ing" or adapting each module independently without losing a global functionality certainly is a

6 1.2. Connectivity in the neo-cortex

(a) (b)

Figure 1.3.: Connectivity matrices. A connectivity matrix is a square matrix that shows the in-
fluence a neuron (or area) exerts on another. (a) Matrix of connection probabilities
between excitatory neurons in the connectome of rat barrel cortex (every row and col-
umn) sorted by the somatotopic location (blocks from A to E) (Udvary et al., 2020).
(b) Structural brain network of macacque cortex (Bullmore and Sporns, 2009). The
surface of the macaque cortex was subdivided into 47 areas (shown in the rows and
columns), and a structural brain network linking these nodes was compiled from
anatomical tract-tracing data.

significant one (Meunier et al., 2010). In the brain, information encoding is achieved via popula-
tion coding, using spatiotemporal patterns of activities instead of relying on the activity of single
neurons (Averbeck et al., 2006; Sakurai, 1996; Pouget et al., 2000). This spatiotemporal activity of
populations is highly dependent on their connectivity and physical layout (Horvát et al., 2016),
which affects the brain’s computations. Notably, the use of modular networks with high cluster-
ing of connections between nodes allows for locally segregated processing with low wiring cost
(Meunier et al., 2010). Indeed, biological neural networks are often highly recurrent, with dense
connections for nearby neurons and sparse connections to specific or far away neurons (Laughlin
and Sejnowski, 2003). They often present an exponential decay in the number of connections
with increasing distance.
Figure 1.3 shows some examples of connectivity matrices from biology. A connectivity matrix is
one way to represent information about brain connectivity. If a connection between two areas
(populations or nodes) is found, then a value 1 is added to the place where the areas meet: the
row and column intersection. If no connection exists, then the value is set to 0. In Fig. 1.3 we
can see dense connections over nearby areas and sparse connections with increasing distance,
reinforcing the modular structure of brain networks.

1.2. Connectivity in the neo-cortex

This modular organization is found not only between brain areas but also within cortical areas.
The microcircuit of the cerebral cortex in the mammalian brain is considered an essential element
in generating our impressive capabilities: it is in the cortex that voluntary control of behavior and
cognitive processes originate (Harris et al., 2019). We know cortical regions are organized into
columns and layers, and most connections between layers show columnar functional organiza-
tion. Also, columns interact through long-range connections laterally. This pattern of connec-

Chapter 1. On brains and computers 7

tivity is found incredibly conserved across regions, suggesting a canonical microcircuit (Douglas
et al., 1989; Douglas and Martin, 2004; Binzegger et al., 2005).
And although we don’t know yet what the function of such a circuit is, we can describe some of
its characteristics: neurons receiving direct inputs do not send axons outside the local region, and
neurons that are driven by the input layers form long-range connections within their layer and
also outside their region (Hawkins et al., 2017; Douglas and Martin, 2004).
Those characteristics lead to basic similarities among different areas, and finding these macro-
scopic characteristics is a step toward understanding how the networks generate functions. Also,
biological implementations of neural networks offer problem-solving capabilities with critical
energy and memory constraints. Computing technologies, and our AI systems, are also facing
energy and memory constraints; we can now consider the solutions found by nature in our artifi-
cial systems. Brains avoid data transfer by having memory and computation colocalized. Biology
offers us an inspiration to perform computation exploiting the physics of the system and with
new paradigms.

1.3. Connectivity in electronic circuits

The classic von Neumann architecture uses separated structures for memory and processing. Any
operation performed on it is based on a precise set of instructions executed to process data. To
do so, it is required that both the data and the instructions are stored in the same memory area.
The data movement between the physically separated processor and memory creates a bottleneck
where latency is unavoidable.
Many approaches are trying to increase the parallelism capabilities of classical computers to de-
crease latency, for instance, by increasing the number of cores. However, the processing system
is not the only component to determine the overall computational performance of a computer.
The memory system used can represent, in fact, one of the significant performance bottlenecks
in classical computers. Besides the latency, classical computers and machine learning techniques
demand high power to perform computation. The primary source of power consumption is due to
data movement from memory (especially the off-chip Dynamic Random Access Memory (DRAM)
access) to the processing unit (Horowitz, 2014; Boybat Kara, 2020). Not surprisingly, many ap-
proaches have been proposed to reduce this data transfer, for instance, caching, multi-threading,
and even different types of RAM computing and photonic devices (Goodman, 1983; Horowitz,
2014; Keckler et al., 2011; Ríos et al., 2019; Verma et al., 2019).
In recent years, one way to increase performance and reduce power consumption has been to
use System-On-Chip (SOC). In SOC, we can also reduce the area of a normally multichip design
onto a single processor that uses much less power than before. This is possible because we use
specialized computing blocks for specific compute-intensive workloads (Hertz, 2022). They have
been used in most portable technologies: mobile phones, tablets, cameras, and many other wire-
less devices. However, although moving towards reducing power and increasing performance,
SOC does not solve the problem of data transfer. Either in multi-chips or SOC, data flow control
between memory and processing blocks is a non-trivial issue.
In an attempt to mimic brain behavior, we shift our computational substrate from the classical
von Neumann architecture to neuromorphic computing. This alternative approach is known as
in-memory computing and creates an energy-efficient solution.

1.4. Connectivity in neuromorphic processors

In in-memory computing, the data is not stored anymore in a separate memory. It works by
eliminating all slow data accesses and relying exclusively on data stored in RAM, avoiding in-
put/output operations. The hardware is used as a memory to store information and to perform
computation using the physics of memory devices at the same time (Boybat Kara, 2020). How-
ever, with still limited memory available, the connectivity on-chip must be carefully designed.

8 1.4. Connectivity in neuromorphic processors

Figure 1.4.: Looking at the brain’s wiring, we can see it is far from homogeneous. Structural
brain networks can be characterized by mathematical models ranging from random
to spatially embedded networks. Figure from (Lynn and Bassett, 2019).

The Network-on-Chip (NoC) architecture has been used to perform the communication of mas-
sively parallel systems, minimizing latency and router congestion. The communication process
among nodes in a NoC system is based on a network of routers (Daneshtalab et al., 2010).
In this new architecture, the physical layout and connection between nodes (or cores) form the
network’s topology. The topology is a fundamental aspect of NoC design, and it is responsible
for the overall cost and performance of the network. The topology influences the latency and
power consumption because data will travel through the routers defined in the NoC. Therefore,
the design of a reasonable NoC topology is crucial to system scalability.
Interestingly biological implementations of neural networks also have binding energy and mem-
ory constraints. The brain’s typical connectivity pattern is understood as being encoded in part
by genetic compatibility. And, the genome’s information capacity limits the construction of bio-
logical neural networks. It is understood that the brain’s precursor cell can have less than 1Gb of
information, orders of magnitude small to encode the connectivity for billions of neurons explic-
itly. A naive encoding of this connection matrix (i.e., explicitly listing all the connections) would
require at least 10T B for a mouse brain (Kerstjens, 2022).
Thus, it is safe to assume a direct mapping between neurons and their connectivity. This gives
rise to a specific network encoding, meaning that the brain does not create random connectivi-
ties; instead, genetic interactions produce a stereotyped network (Barabási and Barabási, 2020;
Barabási and Czégel, 2021; Kerstjens, 2022). More than that, physical laws are apparent in brain
connectivity: the brain needs to minimize the wiring between neurons since it is constrained in
a 3D shape (Horvát et al., 2016). Biological neural circuits need a massive amount of fast and
durable connections. The communication between neurons through the axons (wires) needs to
be optimized to minimize delays and the length of its wires while maximizing the density of
synapses.
Here, we want to exploit the solution found by nature to guide the design of NoC for neuromor-
phic hardware to improve its scalability.

1.4.1. Physical substrate

The brain is physically constrained in a 3D space. The wiring of networks in the brain uses phys-
ical connections: the synapses support the propagation of information between neurons, and the
white matter tracts define communication pathways between regions (Lynn and Bassett, 2019).
The analysis of this physical structure exposes a wide range of topological organizations in brain
networks, such as community structures, small-worldness, and hub structures, see Figure 1.4.
Nature has to solve the same problems we are trying to solve while designing silicon chips to
achieve brain-like computation.
Neuromorphic chips have essentially a 2D-substrate where we design the NoC to implement
our neurons and connectivity. Currently, to fit large neural network models into these acceler-
ators, we use multi-core architectures (Moradi et al., 2018; Merolla et al., 2014; Akopyan et al.,
2015; Davies et al., 2018; Furber and Bogdan, 2020). In these architectures, each core either
emulates with analog circuits (Moradi et al., 2018) or simulates with time-multiplexed digital cir-
cuits (Akopyan et al., 2015; Davies et al., 2018; Furber and Bogdan, 2020) neuro-synaptic arrays in

Chapter 1. On brains and computers 9

which both the synaptic weight matrix and the network connectivity memory blocks occupy a sig-
nificant proportion of the total layout area. Finding trade-offs to optimize both weight-matrix and
connectivity/routing memory structures in multi-core neuromorphic processors can significantly
impact their total chip die area and the size of the networks they can implement. Specifically, by
focusing on small-world network connectivity, we can minimize memory consumption require-
ments while still enabling the design of neural network architectures that can solve a wide range
of relevant "edge-computing" problems, i.e., the types of sensory-motor processing problems that
animals must solve in the real world.

1.4.2. Creating connections

The encoding of a system as a network and the quantitative assessment of its topology can pro-
vide essential insights into its function. The analysis of a brain as a network can be done on
different levels, for instance, structural or functional. Nodes can be seen either as neurons or
cortical areas and edges as axons or fiber tracts. Modeling the brain as a network allows us to
use new techniques and abstract away non-important or non-understandable information. The
communication among specialized brain regions and the integrative functions performed locally
creates a substrate that allows the creation of specific cognitive states. The combination of ar-
chitectural inter-area features with the local plasticity within areas gives the brain the power to
perform complex functions.
We can extend our biological observations to our NoC design. The nodes on a chip share in-
formation through a router network. As previously explained, this network’s topology greatly
impacts its scalability. By focusing on small-world network structures, we can create levels of
communication between routers that are optimized for such structures, thus, following a specific
topology.
The design of a new NoC architecture brings us the challenge of new algorithms for the placement
of the network. A targeted design introduces more constraints than when we work with a general
approach design.

1.4.3. Selected networks

Since biological neural networks follow a structured motif, we performed a systematic analysis
to find the patterns and motifs in ANNs used in neuromorphic computing applications.
We surveyed and identified the most common network architectures in use (Donati et al., 2018,
2019; Risi et al., 2021; Krause et al., 2021; Kreiser et al., 2020) (see also Appendix A).
We found that the Winner-Take-All (WTA) architecture is among the most commonly used in the
community. WTA networks, in their simplest abstract form, consist of an excitatory unit (either a
neuron or a population) that projects to an inhibitory unit. This inhibitory unit, in turn, provides
recurrent inhibitory feedback to all excitatory units (Feldman and Ballard, 1982), as shown in
Figure 1.5 (Watts and Strogatz, 1998).
This modular structure with sparse connections between densely connected excitatory (E) and in-
hibitory (I) populations is also commonly used in other networks, such as reservoir and relational
networks.
Furthermore, these networks are being used in a wide range of applications, e.g., filtering out
the noise, supervised and unsupervised learning, increasing discrimination in the inference of
a classifier, creating relations between populations, and representing variables with population
coding (Donati et al., 2018, 2019; Risi et al., 2021; Krause et al., 2021; Kreiser et al., 2020).
We can optimize hardware parameters and algorithms by focusing on a specific connectivity
scheme while not compromising the applications developed.
Mainly, by being a type of connectivity we find in biological brains, we gain insights into how
to construct our applications and artificial networks. To evaluate if this modular, small-world
structure found in biological networks impacts the performance of ANN, we constrained connec-
tions spatially during the learning of a task. We imposed a penalty term in the loss function for
training, such that long axons (or connections between distant neurons) would be more costly.

10 1.5. Neuromorphic ecosystems

Figure 1.5.: Schematic of a basic WTA network. A set of excitatory units interact with an in-
hibitory unit.

Our findings indicate that we can push ANNs to prefer short-distance connections over long-
distance ones and that accuracy is not highly impacted (see Appendix C), confirming that the
small-worldness of networks is beneficial for Machine Learning (ML) applications (Zheng et al.,
2010; Li et al., 2013).

1.5. Neuromorphic ecosystems

Standard computing technologies have matured in the last sixty years because of the shared lay-
ers of abstractions, also called the computing stack. This common ground creates an interface
between the devices and the end-user applications. Every layer in this stack provides primitives
that are used by the neighboring layers, allowing parallel development of each layer while main-
taining operability and system compatibility.
Recently, neuromorphic systems have been growing and becoming more and more complex. The
development of a neuromorphic computing stack is essential to demonstrate neuromorphic hard-
ware as a viable computing platform.
Neuromorphic systems are implemented by neuromorphic hardware, system software, and applica-
tion software. Nowadays, the integration between layers needs to be better defined, mainly be-
cause neuromorphic computing structures target a much more specialized range of algorithms.
This specificity in applications, hardware, and algorithms makes it even more essential that ap-
plication developers and end users work together from the start of any research development.
Figure 1.6 shows how we envision the computing stack for neuromorphic computing using the
layers of a neuromorphic system.
The research community studies many emerging devices and materials for neuromorphic hard-
ware implementation. And, as a new and active research field, there are few application-ready,
full-scalable neuromorphic systems available to the community. While they are an excellent plat-
form for efficient real-time simulation of neuronal dynamics and synaptic transmission, the con-
figuration and tuning of such systems are typically demanding. They must be facilitated to allow
non-hardware experts to use them. To address these issues, efficient ways to design and use neu-
romorphic hardware are needed.
The most common approach to emulating neural networks with neuromorphic hardware is to
expose its architectures and details. The specific knowledge requirement needed to use these sys-
tems led to a significant amount of software design and implementation to hide these architec-
tures and facilitate the development of applications to solve real problems. Each neuromorphic
chip has different specifications; however, a familiar ecosystem, including a high-level program
interface (either by Graphical User Interface (GUI) or console for a high-level language), a com-

Chapter 1. On brains and computers 11

Figure 1.6.: Schematic of the neuromorphic computing stack. Neuromorphic systems include
neuromorphic hardware, system software, and application software. The integration
between the layers and a well-defined set of primitives will provide the means of
developing and evolving neuromorphic systems at a faster pace. A set of supporting
software is necessary to make the most of neuromorphic hardware. Here we divide
them into system software and application software. System software is the interface
between the hardware and the user applications. And application software is built to
run specific tasks for the user.

piler, and a visualizer, helps to accelerate applications’ development.
More than emulating the brain, we need to find a different abstraction to get the necessary insights
and translate them into machines. Nevertheless, even without entirely defining this new abstrac-
tion, it is clear that we need new ways to program and develop this hardware. Consequently,
supporting software has been developed to make neuromorphic hardware more practical.

1.5.1. Neuromorphic hardware

Following biological plausibility, SNNs were developed to perform parallel computation. These
networks are different from generic ANNs in that they model the action potential generation
mechanism of real neurons to produce output spikes in response to integrated input spikes, pre-
serving the information on the timing of the input signals. The output of a neuron in an SNN is
dependent on previous stimuli, and the neuron only fires after crossing a threshold. Neuromor-
phic hardware has been designed to exploit SNNs’ parallel computation abilities.
Neuromorphic processors are a class of AI hardware accelerators that implement computational
models of SNNs adopting in-memory computing strategies and brain-inspired principles of com-
putation (Roy et al., 2019; Chicca and Indiveri, 2020; Sebastian et al., 2020). In our brains, mem-
ory and computation are colocalized instead of having processing units separated from memory,
as in classical von Neumann architectures, as seen in Figure 1.7.
In an attempt to mimic the brain, neuromorphic electronic circuits were created, offering infor-
mation processing on-demand (driven by events) in an energy-efficient and asynchronous way,
analogous to biological systems (Liu et al., 2014). They emulate the structure and function of our
neural system, not only to exploit the parallel computation but also to understand their computa-
tional properties. Neuromorphic hardware represents a very promising approach, especially for
edge-computing applications, as it has the potential to reduce power consumption to ultra-low
(e.g., sub milliwatt) figures (Covi et al., 2021), thus easing AI computing workloads. However,
the requirement of SNN hardware accelerators to store the state of each neuron, combined with
their in-memory computing circuit design techniques, leads to very large area consumption fig-
ures, which limits the sizes and numbers of parameters of the networks that they can implement.
New materials and devices can overcome such limitations. However, for now, these hardware

12 1.5. Neuromorphic ecosystems

Figure 1.7.: Schematic of the neuromorphic (left) and the von Neumann architecture (right). In
neuromorphic hardware, memory and processing are co-located, avoiding the mem-
ory bottleneck. Figure adapted from (Zhang et al., 2020).

constraints also imply restrictions to the models and, consequently, to the applications that can
be emulated on hardware.
While neuromorphic hardware supports SNNs, the differences between the hardware and the
SNN representation often complicate using the hardware capabilities. The challenge now is how
we can use and program this new hardware and how this can help us get insights into how brains
perform computation. A new hardware platform brings an opportunity to create new ways to
think about computation (Backus, 1978).
To tackle this, besides creating new hardware, the community has been developing new program-
ming languages (Eppler et al., 2008; Davison et al., 2008; NES, 2016; Amir et al., 2013) and new
algorithms (Bellec et al., 2020; Nicola and Clopath, 2017; Lillicrap et al., 2016).

1.5.2. Application software

Application software is a program created to perform a specific task. It is user-specific and is
designed to meet the requirements of the user. The application software is often uncoupled from
the hardware, and the hardware resources can be ignored by adding suitable software abstraction
layers.
In this Thesis, we define application software for neuromorphic hardware as any software that
helps the SNN developer to design, parameterize and prepare the SNN to be deployed in the
neuromorphic architecture. This way, the application software is the primary tool of the SNN
developer. Although SNNs can, in theory, reach the same accuracy as classical ANNs (Maass
and Markram, 2004), we haven’t been able to exploit yet their computational abilities in machine
learning tasks. One big reason for it is related to how new the field is; thus, we do not have
standard tools and algorithms to train and leverage the advantages of SNN.
In neuromorphic systems, these tools do not run over neuromorphic hardware. They can be
uncoupled entirely with any neuromorphic hardware instance, use a hardware simulator or have
hardware as a backend.
It is common to see SNN developers using their own scripts and code. And not surprisingly, there
are a few application software systems that offer a common way to handle the SNN design, e.g.,
Brian 2 (Stimberg et al., 2019), Teili (Milde et al., 2018), Nest (Gewaltig and Diesmann, 2007),
and Nengo (Bekolay et al., 2014).
They all have the same goal: to provide a more accessible infrastructure to design SNN.

1.5.3. System software

System software is a set of programs that control and manage the operations of the hardware. They
are designed to manage the system’s resources, like memory, processes, and security.
They are the interface between the application software and the hardware itself. It represents
the abstraction layer of the hardware. For neuromorphic systems, it can be a compiler or another
type of software that controls how the SNN will run based on the configuration of hardware
parameters.

Chapter 1. On brains and computers 13

One common approach to developing system software is to divorce it from the hardware and
create software that can potentially be used by multiple (different) hardware system or in a way
that will not impact the hardware development. This approach is known as platform-based design.
Another approach is the hardware-software co-design approach. Here, hardware and software are
designed simultaneously to exploit the best of both, even though another architecture can not
easily use the same software. In this work, we use this second approach.
Together with the development of this work, we designed a new system software to facilitate
the use of the Dynamic Neuromorphic Asynchronous Processor (DYNAP) chip. CortexControl
(CTXCTL) (Cor, 2020) offers a Graphical User Interface (GUI) and a Python Console to control
and execute experiments on neuromorphic hardware. More detailed information about the soft-
ware can be found in Appendix B.

1.6. Thesis overview

This introduction outlined how brains and computers are related and how we can emulate the
brain in electronic circuits and neuromorphic processors. We highlight a connectivity pattern
found in biological and artificial neural networks. We also introduced the concept of neuromor-
phic ecosystems and the computing stack, where integrating neuromorphic hardware, applica-
tion software, and system software is necessary to advance the neuromorphic field at a faster
pace. In Chapter 2, we explain in more detail the system software and compilers, including
platform-based design, hardware-software co-design, and the process of routing and placement
of a network. In this Thesis, we present a new approach to reducing the use of memory on hard-
ware. The reduction in memory can lead to a reduction in chip area, allowing the scalability of
neuromorphic devices. To design our routing scheme, we focus on the network’s topology and
exploit the brain’s physical constraints, reinforcing the idea that (physical) distance matters. In
Chapter 3 we describe the router communication in our NoC for small-world networks. This
specificity allows us to significantly reduce the amount of memory needed in the hardware and,
thus, reduce the total chip die area. However, the fixed topology brings more constraints to the
placement of networks. In Chapter 4 we present an algorithm that can deal automatically with
the constraints introduced to facilitate the use of this new hardware structure. Our placement
algorithm consists of three parts: neuron placement, distance calculation, and synapse assign-
ment. In Chapter 5 we discuss the results of our experiments and show memory comparison
with other major systems. Additionally, we present a real-case application scenario, where we
map an Recurrent Neural Networks (RNN) into our hardware design. The Thesis concludes with
Chapters 6 and 7, where we reflect on the research developed, its overall impact, implications,
and some limitations and recommendations for future research.

14 1.6. Thesis overview

"In the long history of humankind those who
learned to collaborate and improvise most
effectively have prevailed."

Charles Darwin

2. System software and compilers

As explained in Chapter 1, the system software is the set of applications that control and manage
hardware operations. For neuromorphic systems, we define them as compilers or another control
for how the SNN will run based on the hardware configurations.
Neuromorphic hardware configurations are based on modeling biological sensors and neural net-
works. Here we focus on multi-core architecture, where each core contains neurons and synapse
circuitries. The most common implementation of a core is to build the circuitries as crossbar ar-
rays. A crossbar array is a matrix-like structure where neurons can be easily fully connected to
each other (see Figure 2.1).

Figure 2.1.: Schematics of a crossbar array. A crossbar is a matrix-like structure where neurons
are hardwired. Black dots mark points where pre- and post-synaptic neurons have an
active connection. Every junction requires a single bit to create a connection between
neurons.

In a crossbar, the memory elements are built at the crossing points of horizontal and vertical
access lines. They provide an easy way to create high-density memory and storage. A N -way fan-
out can be supported within a core simply by the actual wires, and it is as memory and energy
efficient as it can be. However, this has its own drawbacks: crossbars are not scalable to a large
number of neurons. Not only would a large number of neurons require a larger area, but also, the
sneak paths (i.e., the undesired paths for current, parallel to the intended direction) formed by
unselected points in parallel with a selected point can lead to issues during reading and writing
operations.
The advent of nano-scale memristive devices and even 3D-VLSI technologies can mitigate some
of the problems by enabling the construction of dense crossbar array structures for storing the
weight matrices (Sebastian et al., 2020). Still, scaling up networks and connectivity is a problem
of fundamental nature.
To provide the same order of fan-in and fan-out seen in biology, a communication protocol called
Address-Event Representation (AER) was created. AER is used to time-multiplex neuron outputs
onto a shared bus, as depicted in Figure 2.2.
This way, the number of wires needed to connect neurons (and thus, the area) can be reduced

17

18

Figure 2.2.: AER. The communication between pre- and post-synaptic neurons happens through
Address-Event (AE) sent over a shared bus. With the use of AER, the number of wires
needed to connect neurons is reduced from N (as in the crossbar array) to ∼ log2N ,
where N is the number of neurons. Figure adapted from (Vogelstein et al., 2003).

from N , with one active at a time, to ∼ log2N wires that are simultaneously active. The key idea
of the time-multiplex approach is to exploit the fact that electronic communication is several
orders of magnitude faster than the firing rates of biological neurons, trading-off space for speed
of processing to address the scalability and connectivity of a large number of neurons (Mahowald,
1994).
While trying to mimic the brain, in hardware implementations, it is not feasible to have neu-
rons connected directly physically. Multi-core neuromorphic processors usually use NoC designs
for managing the communication of neurons between cores. And different spike routing archi-
tectures have been proposed according to their applications. The most common topology and
routing structures of NoC used in current state-of-the-art neuromorphic hardware are shown in
Figure 2.3.
Classical mesh architectures (Davies et al., 2018; Merolla et al., 2014) represent an easy way to
build large-scale systems. However, when the size of NoC increases, the required hardware area
increases considerably, reducing system scalability. In flattened butterfly architectures (Chen
et al., 2019), neuron cores belonging to the same row and column can communicate directly with
lower routing latency. However, this architecture also brings the disadvantage of significant area
cost and poor multi-casting support. In (Park et al., 2016), the authors proposed a hierarchical
architecture that overcomes some of these disadvantages by using off-chip DRAM to store the
routing lookup table, which significantly increases power consumption. Current methods for
saving power adopt in- or near-memory computing strategies. However, when on-chip memory
is used to store configurable neuron connections, the required hardware area increases propor-
tionally with the number of neurons and synapses.
Every neuromorphic hardware needs system software to configure and program the network
connectivity onto the chip. System software can separate the hardware requirements and con-
straints from the SNN models, offering a translation machine from the model into the hardware.
This translation needs to take care of variability in the SNN models (architectures, neuron types,
synaptic information, and more), availability of resources on the hardware, and its configuration
(connections among neurons).
Therefore, the abstraction level used for programming the models is the bridge between hardware
and software. System software is an essential part of the computational stack. And the develop-
ment of such a layered structure allows users not to be concerned about how the hardware is
structured and how resources are allocated. Of course, knowledge about hardware specifications
can be beneficial when designing SNNs. However, having hardware requirements as a constraint
for model development can slow down our process of getting insights about the brain. We can
develop a more efficient way to address the application demands when we provide a well-defined

Chapter 2. System software and compilers 19

(a) Classical Mesh (b) Triangular Toroidal Mesh

(c) Flattened butterfly Mesh (d) Hierarchical + Mesh

Figure 2.3.: Different types of NoC architecture. Every circle represents a core in the hardware.
Links between cores represent the direct routing path allowed in each architecture.
(a) Classical mesh design. Mesh design allow an easy way to build large-scale neu-
romorphic hardware, but it has high routing power comsumption, area cost and la-
tency (Davies et al., 2018; Merolla et al., 2014). (b) In triangular toroidal mesh there
are additional routing channels which increases the bandwith of the network (Furber
et al., 2014). (c) In flattened butterfly mesh architecture the cores in the same row
and colum can be reached directly (Chen et al., 2019). (d) A mixed hierarchical and
mesh architecture can be used to improve power consumption, area costs and la-
tency (Moradi et al., 2018).

20 2.1. Platform-based design

computational stack, from applications to the underlying hardware.
The development of such system software follows, most commonly, two approaches: platform-
based and hardware-software co- design.

2.1. Platform-based design

Platform-based designs have software development divorced from hardware (Sangiovanni-Vincentelli
and Martin, 2001; Vincentelli, 2002). It is essential to clarify that this does not mean that the soft-
ware is unaware of the hardware, but their development are orthogonal.
In software engineering, a system is considered orthogonal if changing one of its components
only changes that component’s state. Having the software and hardware development orthogonal
to each other means that software does not impact hardware development, and vice-versa.
This independency allows the exploration of alternative solutions, for instance, by considering
unlimited hardware resources. Moreover, it allows the provision of part of the system software
by optimizing one or more of the diverse hardware parameters: number of fan-in (incoming) and
fan-out (outgoing) connections, memory capacity, connectivity, bandwidth, power consumption,
etc.
Developing software not attached to hardware constraints also allows the reuse of the same sys-
tem software for many different hardware platforms.
Several system software ignores some hardware details, allowing the mapping of somewhat generic
networks to the hardware being used, or even simulating hardware being used (Sahu and Chat-
topadhyay, 2013; Das et al., 2018; Bouvier et al., 2019). Other focus on specific hardware char-
acteristics to provide a more optimized mapping (Urgese et al., 2016; Balaji et al., 2020b). Some
work does not provide a complete system software but focuses on parts of it: either the par-
tition of networks to suit some hardware structure or the placement of an already fitting net-
work (Mysore et al., 2022).

2.2. Hardware-software co-design

In a hardware-software co-design approach, hardware and software are designed together to ex-
ploit their integration (De Michell and Gupta, 1997; Darwish and Bayoumi, 2005). Advances in
technology are driven by innovation and by our expectations of functionality. More innovative
electronic devices nowadays mean better hardware technology and better software. With hard-
ware technology almost achieving a plateau, a co-design approach is a more promising way to
guarantee innovation and increase chip functionality (De Michell and Gupta, 1997).
In the co-design approach, the software is tailor-made for the hardware platform. We can then
evaluate the impact of hardware design decisions on real-world applications and algorithm per-
formance. We can also provide feedback to neuromorphic devices, and materials researchers on
the performance requirements, such as size, weight, and power, that fully digital, CMOS-based
designs cannot meet.
A significant advantage of this approach is to create better hardware-software interfaces. How-
ever, to do so, it demands that software engineers are familiar with both hardware and software
systems or that software and hardware engineers work closely together. Hardware-software co-
design approach is a cyclic design methodology: the design of a hardware circuit and its function
could be defined by the execution and analysis of a software program; and at the same time,
the software could be modified given the hardware design. In neuromorphic applications, sys-
tem software allows us to reprogram the connectivity on the chip to perform a different set of
functions without changing the underlying hardware.
Figure 2.4 depicts the difference between a platform-based design and hardware-software co-
design approaches.
The advances in electronic circuits and the expansion of software systems are reinforced by the
availability of resources and the capacity to reuse parts of the systems as building blocks. Here,
we will focus on two main aspects of what a system software should provide for neuromorphic

Chapter 2. System software and compilers 21

(a) (b)

Figure 2.4.: Hardware and software designs. (a) Classical design flow of hardware and software
development, in which they are designed independently, with only shared abstrac-
tion for compatibility. (b) Software-hardware co-design flow. In a concurrent devel-
opment methodology, software and hardware are interlinked and dependent on each
other.

hardware: placement and routing. The problem of placing neurons in cores and routing spikes
among them must consider the hardware’s core organization and routing scheme. The place-
ment (also called mapping) is the process of taking the network’s nodes and finding a physical
distribution on the cores of neuromorphic hardware. Routing is to take a network topology (the
connections between nodes) and define a path (or route) of communication on the hardware. Note
that routing will depend on the placement strategy. Core organization imposes a constraint on
the number of neurons that can be placed together. Routing tables impose a constraint in terms
of the neuron fan-out and connectivity. Allocating routing and connectivity resources to allow
arbitrary networks (e.g., with all-to-all possible connections) at scale is fundamental.

2.3. Routing schemes

Neuromorphic hardware mainly uses two routing schemes: source-address and destination-address
routing (Zamarreño-Ramos et al., 2012). Figure 2.5 shows a simplified schematics of both routing
types. The choice of the routing scheme affects the efficient implementation of the SNN.

2.3.1. Source-address routing scheme

In source-address routing, the spike is routed based on the source neuron information, i.e., the
neuron that originates the event. When a neuron spikes, its address is sent together in the spike
event to a router, and the router will send this information to all the synapses in the network.
When a spike is received, the router searches for the source address in local memory. This mem-
ory codes all the operations that should be performed when a source address is received: forward-
ing the event to one or more output ports, routing it to the local processor, or both simultaneously.
Every synapse has information on the address of its source connection. So, when a spike arrives,
the synapse can make a matching comparison between its information and the address in the
event, and decide whether it will react to the spike or not. Source-address routing can be advan-
tageous for high fan-out networks (a large number of outgoing connections) when multicast is
used. With multicasting, each router can copy a spike based on the information saved in its rout-
ing table. A look-up table can implement a source-address routing scheme either with an off-chip
memory to store all the routing information for each source neuron or by using Content Address-
able Memory (CAM) in each synapse. Accessing an external memory slows down the routing of

22 2.3. Routing schemes

Figure 2.5.: The two basic routing schemes type for neuromorphic hardware. On top, the source-
address routing scheme. When a source neuron generates a spike, its address is writ-
ten in the AER package, and it is forwarded to all the destination neurons. Every
destination neuron has a memory block with the address of its source neurons. If
a match happens, the neuron will react to the spike. On bottom, the destination-
address routing scheme. When a source neuron generates a spike, the destination
address is sent in the AER package, and the router that now sits closer to the desti-
nation neurons can identify the specific destination where the spike needs to be sent.
Source-address and destination-address define when the fan-out happens: if close to
the source or the destination neuron.

Chapter 2. System software and compilers 23

spikes, giving an advantage for CAM. However, in any case, the number of connections that can
be created is limited by the memory available to save the connectivity information.

2.3.2. Destination-address routing scheme

In destination-address routing, the spike is routed based on the destination neurons, i.e., the
synapses that will receive the event. When a neuron spikes, it creates an event for every target
synapse, and the router can identify the correct locations to forward it. Compared to the source-
address routing, this avoids neurons receiving unnecessary spikes. Whenever a neuron receives a
spike, it should react to it. In this case, every source neuron knows its target synapse and encodes
its address as part of the spike being sent. This routing avoids the use of large off-chip memory.
Each router is then responsible simply for redirecting the spike to specific locations given the
information written in the event. However, the information about the connectivity needs to be
stored at the source neuron. Destination-address routing can be advantageous for networks with
low fan-out.

2.3.3. Mixed-address routing scheme

Another approach to route spikes in AER is to use a combination of point-to-point source rout-
ing and multicast destination-address routing. In this case, each source neuron stores the ad-
dresses of target cores (instead of specific target synapses). Then, the router receives the infor-
mation about the core the spike needs to be sent and broadcasts it to all the neurons in that
group. Every target synapse, in turn, has the information about its source neuron and performs
a matched comparison to decide if it should react to a spike. This approach reduces the use
of memory in the source neuron and the number of unnecessary spikes a synapse can receive.

Independently of the type of routing, it is necessary to save the addresses of the neurons in mem-
ory to know where to route the spikes (i.e., to form the network connectivity). In neuromor-
phic hardware, this can be done by using two main types of memory: CAM or Ternary Content-
Addressable Memory (TCAM).

CAM A CAM is a memory that implements the lookup-table function in a single clock cycle
using dedicated comparison circuitry (Schultz, 1997; Pagiamtzis and Sheikholeslami, 2006). It
can store and query binary inputs, i.e., 0 and 1. In CAM memory, instead of retrieving data by
accessing a memory address, the data is recovered by an exact match-based search of the data
itself. The memory recovers the addresses where the data can be found. CAM is much faster than
RAM in search tasks, however power consumption in CAM is still high in comparison with RAM
of similar size (Jamil, 1997; Rajendran et al., 2011).

TCAM TCAM is a special type of CAM that allows a third state of "don’t care" in one or more bits
of stored data (Rajendran et al., 2011; Perniola et al., 2018). Similarly to CAM, it also performs a
search in a single clock cycle. The "don’t care" state increases the flexibility of searching where the
data doesn’t need to be an exact match (Agrawal and Sherwood, 2006).

2.4. Placement approaches

Computational neuroscientists and SNN software developers describe networks in terms of neu-
ron populations and connections without considering any hardware restrictions: the model is not
coupled with the hardware. Nonetheless, hardware constraints play a significant role and impose
severe limitations on the model that can be executed.
For instance, the most straightforward issue is when the model has more neurons or connections
than the hardware can accommodate. In a hardware-aware SNN modeling, the number of neurons

24 2.4. Placement approaches

in the hardware would limit the SNN creation. Additionally, trying different hardware platforms
can aggravate the burden on the SNN developer. Nonetheless, manual placement, known as
hardware-aware modeling, is still a common and valid approach for small networks. However,
each new platform has its own constraints, and updating the model to fit each platform is a time-
consuming and error-prone task. An automatic way of doing it is essential to facilitate the use of
neuromorphic hardware.

2.4.1. Hardware-aware SNN modeling

To develop an SNN to be "hardware-aware" means to take into consideration the hardware pa-
rameters or resources before SNN design. The hardware-aware modeling often can take two
approaches: a priori hardware knowledge or optimization of an existing network.
The a priori modeling is the most accessible approach (from a hardware perspective): an SNN is
designed from scratch with knowledge about hardware resources and parameters. And while it
makes it easier for the SNN developer to try their network on the hardware, it limits the design
choices.
In the second approach, the SNN is transformed or optimized to consider the hardware restric-
tions. Often, SNN developers define their own scripts to help with this task. But also, we can find
work developed to make this process easier, faster, or less error-prone (Gopalakrishnan et al.,
2019; Chowdhury and Shah, 2022; Milde et al., 2018).
Although there is no limitation on the design of the SNN, the conversion, either automatically
or manually, to fit the hardware resources can lead to different behaviors that demand further
tunning (Fang et al., 2019).
In this Thesis, however, we focus on the approaches that use software as part of the neuromorphic
computational stack that is created to facilitate the placement and routing of SNNs. We are
interested in the automatic mapping and routing for neuromorphic hardware.

2.4.2. Neuromorphic compilers

Developing a neuromorphic compiler is an emerging approach in the neuromorphic hardware com-
munity. A compiler is a program that can translate a high-level description (here, an SNN model)
into a machine language (here, the chip-specific hardware configuration) without exposing the
hardware structure.
Mapping an arbitrary SNN model onto neuromorphic hardware is not a trivial task. Partition
and distribution of resources are challenging problems. In a more specific setting, partitioning
a network into subgroups while minimizing some attributes can be seen as the K-way partition
problem, which is an NP-Hard combinatorial optimization problem (Carlson and Nemhauser,
1966); thus, it is common to use approaches based on approximations through greedy algorithms,
i.e., making an optimal choice at each step while attempting to find the optimal solution or other
heuristics.
Every neuromorphic hardware needs its own software framework to place networks. The ap-
proach among them all is similar: partition of an SNN into clusters with several mapping strate-
gies. Every strategy focuses on minimizing a specific attribute, such as energy consumption,
latency, throughput, and many more (Das et al., 2018; Balaji et al., 2020b; Titirsha et al., 2021;
Balaji et al., 2020a; Titirsha and Das, 2020; Lin et al., 2018; Balaji and Das, 2019; Song et al., 2020).
Besides placing an SNN to specific hardware, some approaches try to mitigate general constraints
of neuromorphic hardware, such as limited precision or constrained computation, by decoupling
the network from the target hardware (Ji et al., 2016, 2018; Rueckauer and Delbruck, 2016), for
instance. And placing a network onto hardware also needs to consider how spikes are routed
on the chip. TrueNorth (Merolla et al., 2014) and Loihi (Davies et al., 2018) use the destination-
address routing scheme. SpiNNaker (Furber et al., 2014) and BrainScaleS (BrainScales, 2015)
use the source-address routing scheme with the routing tables stored in a large off-chip memory.
DYNAP (Moradi et al., 2018) uses on-chip hierarchical routing with a combination of point-to-
point source-address routing and multi-cast destination-address to reduce memory usage.

Chapter 2. System software and compilers 25

Loihi TrueNorth SpiNNaker DYNAP
neurons per
core

1024 256 1000 256

cores per
chip

128 4096 18 4

core area 0.41 mm2 0.0936mm2 0.4 mm2 9.6mm2

chip die area 60 mm2 430mm2 102 mm2 43.79mm2

routing destination-
address

destination-
address

source-address
multicast

mixed

compiler LCompiler Corelet PACMAN -
technology Digital ASIC at

14-nm CMOS
Digital ASIC at
28-nm CMOS

Digital, pro-
grammable
ARM Cores
130-nm

Mixed-signal
180-nm CMOS

total neurons
and synapses

130,000 neu-
rons, 130 mil-
lion synapses

1 million neu-
rons, 256 mil-
lion synapses

18,000 neurons
and 1,800,000
synapses

1,024 neu-
rons, 64,000
synapses

Table 2.1.: Comparison between some of the major neuromorphic chips.

Nevertheless, for any NoC architecture used, placing and routing a SNN onto neuromorphic hard-
ware has begun to receive substantial attention (Galluppi et al., 2012; Amir et al., 2013; Lin et al.,
2018; Ji et al., 2018; Fang et al., 2019; Das et al., 2018; Ji et al., 2016).
Every neuromorphic compiler integrates a different mapping technique in a hardware-specific
framework. Also, independent compilers have been developed to focus on different structures
or mapping strategies (Neckar et al., 2019; Ji et al., 2016; Benjamin et al., 2014). For example, Ji
et al. (2018) introduces a compiler that transforms the network model into a computational graph
until only a specific set of operations (defined by the hardware) is reached. Mysore et al. (2022)
focus on the optimal way to partition a SNN to fit an extended version of hierarchical AE routing
(HiAER).
The biggest producers of neuromorphic hardware provide their own compilers: it is essential to
provide a good programming model and an easy-to-use tool to make the hardware accessible.
SpiNNaker (Furber et al., 2014) uses PACMAN (Galluppi et al., 2012), BrainScales (BrainScales,
2015) uses PyNN (Davison et al., 2008), Intel’s Loihi (Davies et al., 2018) uses LCompiler (Lin
et al., 2018) and IBM’s TrueNorth chip (Merolla et al., 2014) uses Corelet (Amir et al., 2013).
Here, we present the routing mechanisms and the placement approaches used by Loihi from Intel,
TrueNorth from IBM, SpiNNaker from University of Manchester, and DYNAP from Institute of
Neuroinformatics (INI). Table 2.1 shows a summary of their characteristics.

Loihi

Intel’s Loihi (Davies et al., 2018) is a manycore digital neuromorphic processor with a pro-
grammable, on-chip learning engine for SNN. A Loihi chip contains 128 neuromorphic cores
implementing 130.000 neurons and 130 million synapses. Each Loihi core contains 1024 neu-
rons and uses a destination-address routing scheme with two megabits of Static Random Access
Memory (SRAM) per core to keep the connectivity of the neurons in the core. The design of Loihi
allows putting up to 4096 chips together, and spikes are communicated between the cores using
events in an asynchronous NoC. Loihi doesn’t depend on off-chip memory to create the connec-
tivity but still uses a separate memory area per core to do so. This leads to various mapping
constraints, including the maximum fan-in and fan-out connections.
Intel also developed a compiler for Loihi, LCompiler (Lin et al., 2018), allowing users to place
SNN without knowing the hardware configurations. LCompiler receives the SNN specification
from a Python code and produces a binary byte stream that maps the network onto the hardware
in three steps: preprocessing, mapping, and code generation. In the preprocessing phase, the

26 2.5. Summary

SNN parameters are validated, shared configurations are extracted, and a connectivity matrix is
generated. Then, a greedy algorithm maps the SNN onto neuron cores.

TrueNorth

TrueNorth (Merolla et al., 2014) is a digital multi-core neuromorphic chip developed by IBM.
A TrueNorth chip contains 4096 neuromorphic cores, each containing 256 spiking neurons and
12.75 kilobytes of SRAM memory to store the connectivity. Each TrueNorth core communicates
with its neighbors using a 2D-Mesh NoC. TrueNorth uses a destination-address routing scheme,
and each event contains information on the destination core and axon. Within a core, a crossbar
is used to implement synapses and spike communication. In TrueNorth, each core can support
a fan-in and fan-out of at most 256 neurons. The placement of SNNs into the hardware is done
using a programming paradigm called Corelet (Amir et al., 2013). Corelet builds and deploys
SNN to their architecture. Since it is bounded to the hardware, it is used to build SNN using
functional units, called Corelets, that are preconfigured. This way, the process of SNN placement
is relatively direct, mapping their functional units onto the chip’s cores.

SpiNNaker

SpiNNaker (Spiking Neural Network Architecture) (Furber et al., 2014) is a massively-parallel
multi-core computing platform composed of general purpose ARM cores. Each SpiNNaker chip
has 18 ARM968 cores processors embedded in a programmable NoC. Each processor contains a
local 32 kilobytes instruction memory and 64 kilobytes data memory. Additionally, each SpiN-
Naker chip contains 128MB RAM shared by the 18 ARM cores. Each chip can simulate a few
thousand simple neuron models, with approximately 1000 input synapses per neuron. The SpiN-
Naker architecture is highly scalable, from a single chip up to 65,536 chips. SpiNNaker uses
PACMAN (Galluppi et al., 2012) to model SNN onto their hardware. PACMAN uses PyNN (Davi-
son et al., 2009) as the higher-level interface of the system, where the model is created. Their
software operates in three main steps: splitting, grouping, and mapping. First, it splits SNNs
too large to fit into a single core into subgraphs. Then it groups these subgraphs to add as many
subgraphs as possible into a single core. After that, it allocates neural groups to processors using
greedy algorithms and calculates routing.

DYNAP-SE

DYNAP-SE (Moradi et al., 2018) is a mixed-signal multi-core neuromorphic processor with four
cores, where each core implements 256 analog neurons arranged in a 16×16 crossbar. Each neu-
ron has 64 programmable synapses leading to a max fan-in of 64 connections and a maximum
fan-out of 4k connections. DYNAP-SE implements a two-stage routing scheme. It uses a combi-
nation of point-to-point source routing and multicast destination-address routing. Each neuron
has a source memory to store the addresses of the destination cores (maximum of four in DYNAP)
and a target memory to keep the tags that its (64) synapses use to accept the spike from the match-
ing sender neuron address. There are fewer cores than neurons, so the source memory is smaller
than the destination one. Figure 2.6 shows how DYNAP-SE handles the routing.
DYNAP-SE does not have a compiler. The mapping of a SNN to a chip is done manually by the
SNN developer.

2.5. Summary

Those approaches make it clear that compilation and automatic distribution of resources are the
next challenges on neuromorphic hardware, and it is a required task. Although every neuro-
morphic hardware and simulator provides tools with specific mapping techniques, and the work

Chapter 2. System software and compilers 27

Figure 2.6.: Two-stage tag-based routing scheme used in DYNAP-SE. Figure adapted
from (Moradi et al., 2018). Every time a spike is generated by one of the N
neurons (column to the left), it is sent to specific routers (or intermediate nodes).
Each router that receives it will broadcast the spike to all the neurons in its cluster.
Once the spike arrives at a neuron, the address of the sender neuron will be compared
to the one written in the neuron’s memory, and if they match, the spike will trigger
some action.

28 2.5. Summary

that has been done opens up a new path, an optimized placement for analog and mixed-signal
multi-core processors is often neglected and relatively unexplored.
In this Thesis, we present a new approach for placement and routing of SNN onto analog/mixed-
signal multi-core processors. All neuromorphic systems have a limitation on the maximum con-
nectivity they can offer, which depends on the amount of memory available to save the connec-
tivity structure of the network. We can notice the difference in size on the neuromorphic chips
presented in Table 2.1. One main characteristic of that is the fact that digital technology still
employs a single memory block to store the connectivity among neurons. In contrast, in mixed-
analog technology, every neuron has its own memory block. By focusing on reducing the memory
needed to save the connectivity in mixed-analog signal hardware, we provide a way to minimize
the total chip die area.

"Sometimes science is more art than science,
Morty. A lot of people don’t get that."

Rick Sanchez, Rick and Morty

3. Brain-inspired routing

A software-hardware co-design approach is a cyclic process: the software depends on the hard-
ware, and the hardware depends on the software. However, we can only discuss placement algo-
rithms after introducing the routing scheme and the hardware design. Our hardware design (and
routing scheme) was defined by considering the mixed-signal "emulation" approachBenjamin
et al. (2014); Qiao et al. (2015); Moradi et al. (2018) and by keeping in mind the small-world
network structure of our applications and the brain.
Finding trade-offs to optimize weight-matrix connectivity and routing memory structures in
multi-core neuromorphic processors can significantly impact their total chip die area and the
size of the networks they can implement.
Following the original neuromorphic engineering approach (Mead, 1990), we look at animal
brains for inspiration and propose a brain-inspired strategy to perform this trade-off. Research
on the effects of spatial constraints on brain connectivity can give us insights and a better under-
standing of the principles shaping neuronal organizations.
Our primary idea is to have a core fully connected in a hardwired way, representing groups of
different populations. Each core could have a ratio between neuron’ types (excitatory-inhibitory,
following biology) already connected: all excitatory to all inhibitory and vice-versa.
We want to investigate how to connect neurons to allow an SNN with a high fan in/out. While
maintaining the ability to provide a scalable system. The scalability of neuromorphic systems
is mainly restricted by communication requirements (to root AE among neurons): bandwidth,
latency, and memory requirements. Tipically, in neuromorphic chips, the memory area takes
most of the chip size, thus we decided to focus on memory requirements.
The crossbar structure, introduced in Chapter 2, allows us to have many connections, with phys-
ical mapping of the network and processing direct in memory; however, we need to provide a
practical route scheme to give rise to plastic and adaptive connections.
With this in mind, we propose a placement and routing scheme optimized for small-world net-
works that will minimize memory requirements in the routing tables while allowing flexibility
for other network configurations.
The main characteristic we consider is the number of connections among neurons and how these
connections become sparse with distance. As we find in the brain, the number of connection
within regions is higher than between regions. We can see diferent brain regions as different
cores in the neuromorphic hardware (see Figure 3.1 for a comparison). The connectivity inside a
core would be the highest, and the number of connections decays across cores, given their physical
distance.
Often, neuromorphic hardware has a fixed cost to connect two neurons: the price of a synapse is
specified in terms of bit address, independently of their characteristics. We need to use CAMs or
TCAM to store these bit addresses. The networks’ fan-in and fan-out are limited by the available
memory on hardware to store the connectivity. To scale up the number of connections allowed
on a chip, we need to either provide more memory or reduce the cost of storing the connectivity.
Increasing the chip memory leads to an increase in costs and area.
When we look at the small-world topologies, we notice that nearby neurons have the highest
number of connections (dense, highly connected nearby clusters), and the connections get more
sparse with distance. Our approach to designing a routing architecture is based on the idea that a
connection’s cost should consider the distance between the connected neurons, i.e., by using more
or fewer bits to define connections depending on how often they are created. This is the same idea
behind data compression used, for instance, in jpeg (Wallace, 1992), or morse code (Burns, 2004).
In our approach, the memory needed to route a spike is inversely proportional to the distance
between the connected neurons. Instead of considering all the connections with the same number

31

32 3.1. Distance matters

Figure 3.1.: Schematics of the small-world network connectivity in the brain, and how this be-
came our inspiration for a new routing scheme. The number of connections inside a
brain region is higher when compared to the number of connections between areas.
Related brain areas are placed together and have more connections than unrelated
areas. We can consider different brain regions as different cores. Cores that share
many connections should be placed closer, and unrelated cores (with a small number
of connections) should be placed far away.

of bits, we define the number of bits necessary for a connection based on their distance. The
higher the distance between connected neurons, the more memory (i.e., bits) is needed to define
a connection.

3.1. Distance matters

To reduce the memory requirements in this new routing, we reinforce the idea that distance plays
a role in the connectivity, and mainly, it should be taken into consideration in the cost of creating
connections on a chip.
For this, we introduce the concept of specificity. In densely connected clusters, neurons respond
to all the activity of the neurons in the same population. In this case, there is no specificity:
it does not matter the neuron sending the spike; all the neurons in the same population would
respond to it1. The connection specificity increases with distance, inversely proportional to the
number of connections. Since connections get more specific with distance, then more information
is necessary; thus, the cost of creating a connection increase with how distant the connected
neurons are. In biology, this is represented by the wiring cost. In neuromorphic, we define it as
the number of bits needed to describe such a connection. Figure 3.2 shows an overall scheme of
the specificity and the bits necessary to address the connections.
Our connection specificity is defined by the distance among neurons. We can implement this
physical distance into our routing scheme in a hierarchical way. Depending on the level in the
hierarchy we are (thus, the router level), we will need more or less bits to define connections.
In our definition, when we move up in the router levels hierarchy, our specificity increases, i.e.,
we can be more specific regarding what subset of neurons is sending connections. With the
increase in specificity more bits are necessary to address a spike, increasing the cost of creating
a connection. At the highest router level, it would be possible to assign specific connections
between two neurons, which leads to the identification of the complete address of the source
neuron.
The fan-in per neuron in such a structure depends on the distance among cores and the number
of cores at each distance, as explained in Figure 3.3.
Following the exponential drop-off of connection numbers with distance observed in biology,
we assume that the number of connections required between cores depends on their distance.

1we consider all-to-all connected clusters, but we still can programmatically switch off some of the synapses to achieve
other patterns of local connectivity (for instance, having 75% of the neurons on a core connected)

Chapter 3. Brain-inspired routing 33

Figure 3.2.: Core specificity and the number of bits per neuron. Each circle represents a core,
and the red portion of it shows the proportion that a destination synapse can listen
to (can receive from) a source neuron. With increasing distance (and router level),
we need more and more bits to define connections. The specificity of a core depends
on the target neuron’s "point-of-view". A neuron can receive connections from all the
neurons in all the cores that can be reached through an R0 router, i.e., all the neurons
in the same core. These connections are hardwired, with a single latch per core to
(de)activate them. A neuron can receive connections from half of the neurons in all
the cores that can be reached through an R1 router. These connections cost a single
bit per neuron to listen to the right or left side of the cores. The number of possible
connections is halved by every increase in router level, to the extent that we reach
the specificity of a single neuron to far away cores. The number of bits to define a
single-neuron connection depends on the number of neurons per core. Note that the
total memory cost for every neuron needs to account for the bits used for weight and
synapse’s type (GABAA, GABAB, NMDA, AMPA, among others); Nevertheless, since
those bits are constant, we will not consider them in calculating the number of bits
necessary to create a connection.

34 3.2. Synapse types

Figure 3.3.: Hierarchical fan-in. A target synapse of a neuron, represented as the blue dot in the
left most core, has a fixed number of possible connections. The number of connec-
tions it can receive depends on the distance/router and the number of cores at that
level. Every node in the tree represents a core. Red areas are the core portion that can
target the marked neuron (depicted in blue). In this example, assuming three router
levels (R0, R1, and R2), nine cores, and four neurons per core (a total of 36 neurons in
the chip), the target neuron can receive spikes from all the neurons in the same core
(4 neurons); half of the neurons in the cores reached through R1 (2 ∗ 2); and a fourth
of the neurons in the cores reached through R2 (6 ∗ 1).

We associate physical distance with the levels in the router hierarchy: e.g., all cores that can be
reached via an R1 router level are at a distance 1. Each neuron in a core can receive inputs from
all the neurons inside the same core (all the neurons are seen as one single block at R0); from one
of the halves of all the cores reached through an R1 router; from a fourth of all the neurons in
each core reached through an R2; and so on2.
As the distance between neurons and cores increases, fewer connections are made; thus, there is
no need to allow connectivity between all neurons in different cores. This allows us to reduce the
connectivity address space and thus reduce the overall memory required to specify each neuron’s
source and target population address.
Thus, considering n neurons per core, the fan-in of a single neuron can be defined from the router
levels. From R0, a target neuron can receive spikes from n neurons (all neurons inside the core),
from R1, it can receive spikes from n

2 , from R2, n
4 , from R3, n

8 , and so on. Or, more formally:

Fan in per neuron = n+
(r∑
i=1

n
i ∗ 2

)
×Nr (3.1)

Where r is the number of router levels, and Nr is the number of cores that can be reached through
that router.

3.2. Synapse types

To create the connectivity on hardware it is necessary to store the information about source and
destination neurons in memory. In our approach, the distance between two connected neurons
is an essential factor in determining the cost of the connection. And, as shown in Figure 3.2,
we have a different number of bits needed to create a connection between neurons, given the
distance between them. At first glance, TCAMs seem more appropriate for our routing scheme
since we could have the same number of bits for all connections and use the "don’t care" bit to give

2In our scheme, we also provide a few rows of "full address bits" to specify connections that could break the network
structure we are focused on and make the chip more general.

Chapter 3. Brain-inspired routing 35

rise to the specificity. However, TCAMs are more costly in terms of area and power than CAMs
cells (Liu, 2002; Noda et al., 2005). With this in mind, in this work, we use CAM for our routing
with variable lenght addresses.
In our hierarchical architecture, we need to define new synapse types3. Mainly, two types are
vital to be differentiated: the local ones, i.e., synapses created inside a core, which we will call
local recurrent synapses, and the synapses between cores, which we will call non-local.

3.2.1. Local recurrent synapses

The local recurrent synapses are the connections formed inside the core using R0 routers. In our
architecture, the local connections can be either all-to-all connected or not connected at all. This
imposes hard constraints in terms of population size in our network. Since all cores have the
same size, thus the same number of neurons, and with only an all-to-all connectivity option, we
would have to assume all the populations in the network have the same amount of neurons.
Often, this is not the case. To overcome this limitation, a latch per neuron is included. We can
create variation in population connectivity with software programmability, where we can shut off
some connections, for instance.

3.2.2. Non-local synapses

Any connection between neurons from different cores is defined as an external synapse. This
means the connection has to go through, at least, the R1 router.
The R1 routers connect a fixed number of cores. Upper-level (>R2) routers connect a fixed num-
ber of lower-level routers.
They manage inter-core communication and long-distance communication. Each connection has
a different cost associated with it, given the router level it needs to go through.
Also, we have off-chip synapses, which can be used to inject input signals from outside the chip.
A few rows of full address bits are available for those connections.

Learning synapses

Biological networks adapt and learn continuously. In a wide variety of species, from insects to
humans, this learning is achieved by changing the synapses’ strength (or weights). One classi-
cal way to change this strength depends on the firing order between a pre- and post-synaptic
neuron (Caporale and Dan, 2008).
In neuromorphic hardware, this can be implemented using a crossbar or any other memory-
structured architecture. Crossbars’ driving signals are applied to the axon and dendrite to update
the weight stored at their intersection. In other memory-designed architectures, some bits of
memory store the weights that can be updated given the proximity of an input spike and an
output spike, which can be stored in a buffer or used as another signal.
Often the circuits that allow learning mechanisms are designed separated and are implemented
in a way that can be disabled. In this work, we do not consider learning circuits and assume our
networks will be placed after training, being used for inference.

3.3. Multi-core hierarchical routing mechanism

We propose a new multi-core hierarchical routing scheme that exploits the SNN architecture to
reduce memory consumption and address the connectivities. In our hierarchical routing scheme,
we have different levels of routers. And the maximum router level needed is dependent on the
number of neurons per core. Each router is responsible for the local traffic, deciding if the spikes
(or events) should be broadcasted down, sent to other routers at the same level, or to a router in
the upper hierarchy.

3Please, bear in mind these types have nothing to do with the classical synapse types as in excitatory or inhibitory.

36 3.3. Multi-core hierarchical routing mechanism

Figure 3.4.: Hierarchical routing with logic inside routers and a combination of source-address
and destination-address schemes. When a source neuron generates a spike, this spike
will contain the source neuron address and the information about the distance that
the spike needs to reach. The spike arrives at the R0 (local core router), and it will be
broadcasted inside the core (without self-connection). In each router level, including
the R0 router, the router identifies if the spike needs to be sent to a farther distance
and, if so, sends it to the next router level. Every router also sends the spike to the
neurons connected to it. In this figure, we have a representation of a small part of the
chip; not all neurons will be connected to the same R1 routers, for instance, so not all
spikes will arrive at all neurons in the chip. When a target synapse receives the spike,
it gets the information about the source neuron address and the distance the spike is
coming from; thus, it can identify how many bits are necessary to make a matched
comparison to accept the spike.

The source neuron just needs to know how far its target neuron is. This way, when a neuron fires,
the spike is sent to its first router, R0. Every router contains instructions that, given the distance
the spike needs to travel, can decide if the spike will be broadcasted down, sent to an upper-level
router, or another router in the same hierarchy level (see Figure 3.4 for a schematics).

The information sent in the event also contains the full address of the source neuron. However,
when a neuron receives an input spike, it only checks part of the address given the router level
that the spike came through. Any spike sent by an R0 router is not even evaluated; the neuron
accepts the spike and reacts to it. Spikes sent by an R1 router have the first bit checked with the
information in the target synapse neuron memory for R1 router: if the source neuron is located in
the expected part of the core, then the target neuron will accept and react to the spike; otherwise,
nothing happens. Similar checks are applied for higher-level routers (> R2): for every router level
added, one more bit needs to be verified.

These connections have a constrained address space, i.e., since there is an upper bound on the
router to which a spike can be sent, it is not necessary to consider all of the neurons on the whole
chip. In a model going up to the R2 level, each neuron needs memory to store seven bits in total,
allowing a fan-in from up to half of the neurons in the cores that can be reached through the
R1 level plus a fourth of the neurons in each of the cores that can be reached through R2. To
support this reduction in address space, we compute the routing distance by combining the use
of computing logic and memory in each router module and update the distance information in
the spike packet as it traverses the router, thus reducing the address space to the bare minimum
needed by the local cluster.

Zhe Su currently develops all the designs of this new chip and routing architecture. Figure 3.5
shows the hierarchical routing scheme designed to support small-world network connectivity
with on-chip memory.

Chapter 3. Brain-inspired routing 37

Figure 3.5.: Hierarchical routing NoC architecture being designed by Zhe Su. Each red circle
represents a core. This hierarchical tree architecture is optimized for small-world
network topology. This structure reduces the number of routing hops and allows a
large fan-out multicast, thus reducing the power consumption of routing.

3.4. Summary

The routing scheme defines how neurons can communicate and the way memory needs to be
distributed to allow the connectivity. In our hierarchical brain-inspired routing scheme, we have
densely connected clusters, without neuron specificity inside cores. Following the exponential
drop-off of connection numbers with distance observed in biology, the routing scheme considers
that the number of connections required between cores depends on the distance between them.
We represent the physical distance with the levels in the router hierarchy: e.g., all cores that can
be reached via an R1 router level are at a distance 1, via R2 routers are at distance 2, and so on.
There is a clear relation between router levels, number of connections, and distance between
cores. As the distance between neurons and cores increases, fewer connections are made; thus,
there is no need to provide resources to create connections between all the neurons in differ-
ent cores. This allows us to reduce the connectivity address space and thus reduce the overall
memory required to specify the source population address for each neuron. In our hierarchi-
cal routing scheme, high-level routers manage connections between the immediately low-level
routers. The router level just above the cores manages the connections between a fixed set of
cores. The trade-off implemented is to add logic to the routers and combine multicast source
address routing with destination address routing. Specifically, by adopting small-world type net-
work size/connectivity, we can implement trade-offs that minimize memory requirements while
still enabling the design of SNN architectures that can solve a wide range of relevant problems,
i.e., the types of sensory-motor processing problems that animals solve in the real world. We
can minimize memory requirements by reducing the address space (i.e., the number of bits and
hence chip area) required to map the (many) connections between nearby neurons and allocate
more bits for larger address space domains used by the sparse long-range connections.

38 3.4. Summary

"Programming is more than an important
practical art. It is also a gigantic undertaking
in the foundations of knowledge."

Grace Hopper

4. Brain-inspired placement algorithm

The routing scheme defined in Chapter 3 determines the source and target memory structures
based on a relative distance between neurons and cores. The placement algorithm needs to place
neurons and synapses of a user-defined neural network into neuron circuits and cores located in
absolute space coordinates while adhering to the hardware’s specificity and distance-based con-
nectivity constraints. For every neuron in the SNN, a specific location on the neuromorphic chip
has to be defined. The quality of the neuron placement is essential to keep routing the spikes
efficiently. The new hierarchical routing scheme, although providing a way to minimize memory
resources, defines constraints that impact the placement of a network on the chip. Thus, offering
an automatic placement increases the usability of the chip.

4.1. A canonical network

To define our placement algorithm, we started by defining a canonical network. This is the net-
work that follows our hardware constraints and leads to optimal use of the hardware resources.
We took as inspiration for the canonical network examples of WTA networks introduced in Chap-
ter 1, as shown in Fig. 4.1, with small-world connectivity matrices.
Our canonical network has neuron populations with the same number of neurons as in our neu-
romorphic core. Each population is then all-to-all connected, and the number of connections
between populations drops off with the distance between the cores, as depicted in Fig. 4.2.

4.2. The placement algorithm

We propose a new brain-inspired heuristic to place the network on this new hardware. In Chap-
ter 3 we introduced our hierarchical routing scheme designed to support small-world network
connectivity with on-chip memory.
The routing scheme defines some rules for our placement. The lack of specificity inside cores
and its densely connected set of neurons indicates we need to find densely connected clusters in
our SNN to be mapped to cores. The exponential decay in connections between router levels is
associated with physical distance, e.g., all cores that can be reached via an R1 router level are at a
distance 1. This information indicates how we should place cores regarding each other. There is
a clear relation between router levels, number of connections, and distance between cores.
The routing scheme gives us some restrictions about the hardware we need to incorporate in our
placement. We have highly connected clusters and a dependency between core distance and the
number of connections. With all of this, to place a network, we follow three main steps:

• neuron placement: first, we place neurons in cores given the connections among them; we
look for densely connected clusters in the network.

• distance calculation: second, we create a map of distances among the cores created; the
number of connections between cores defines our distances.

• synapse assignment: lastly, we place the connections among neurons; we define a router
path for each connection.

41

42 4.2. The placement algorithm

Figure 4.1.: Example of a WTA network implemented on a neuromorphic processor (from (In-
diveri and Sandamirskaya, 2019)). Blue blocks represent inhibitory synapses with
negative weights, and red blocks represent excitatory synapses with positive weights.

Figure 4.2.: Canonical networks are generated to match a hypothetical neuromorphic processor.
Row a shows five populations. We create populations with the same number of neu-
rons as in a core, all-to-all connected. For simplicity, we place our populations on a
1d-line defining distances (and thus the connections between populations). In b, we
assign connections between cores at a distance of 1. These cores will share connec-
tions with half the neurons in a nearby core. In c, we assign connections between
cores at a distance of 2. They share connections with a fourth of the number of neu-
rons in a core at that distance. This process is repeated until there are no more cores
or they are so far away that no connection is created. Only the procedure for the cen-
tral core is shown in the figure, but this process is applied to all cores.

Chapter 4. Brain-inspired placement algorithm 43

Figure 4.3.: Diference between a clique and a component. In a clique, all the nodes are directly
connected to each other. In a component, all the nodes are directly or indirectly
connected to each other.

4.2.1. Neuron placement

The placement of neurons starts by looking at the neurons as "receivers", i.e., considering the
connections arriving at a neuron. For this, we look at the adjacency matrix only with the incoming
connections to a neuron.
We group neurons that share the largest number of common senders. And because we have an
architecture where inside a core, the neurons are all-to-all connected, we search for cliques of
the network. Cliques are a particular case of common senders, where the whole group receives
spikes from every other neuron. We use the Bron-Kerbosch algorithm with pivoting to define
our cliques (Bron and Kerbosch, 1973; Cazals and Karande, 2008). A neuron, however, can be
part of one or more cliques. Since the same neuron can not be placed in two different cores in
the hardware, after generating cliques, we verify that every neuron is, at most, in one clique. If a
neuron is part of two or more cliques, we use a heuristic to keep the neuron in a single clique. Our
heuristic verifies if we can keep the neuron in a core without exceeding the maximum number
of neurons in the core. We then place the neuron in the biggest clique that is within the core
capacity. Each clique will be placed in a different core. The routing of spikings in these cliques
needs virtually no memory since the connections are hardwired. After placing cliques, if any
neuron is left, i.e., if a neuron is not part of any clique, we keep forming clusters considering the
largest number of common senders. Each cluster will be added to a different core.
Algorithm 1 describes more formally how we place neurons in cores given the connections among
them.

4.2.2. Distance calculation

With all neurons separated by cores, we define distances among the cores, to be able to place
specific connections. The number of connections between two cores defines the distance between
them. Since we follow the biological concept that the number of connections decays with distance,
we define the distance between cores i and j as:

dist(i, j) =
⌊ n
e(i, j)

⌋
+ 1 (4.1)

where n is the number of neurons per core, and e(i, j) is the number of connections core i is
receiving from core j. Note that our distance metric can be non-symmetric, i.e., the distance from
core i to j might not be the same as from core j to i.

1a clique is a group of nodes that are all connected to each other, see 4.3

44 4.2. The placement algorithm

Algorithm 1 Neuron placement

Require: Graph G = (V ,E) with incoming connections and coreSize with maximum number of
neurons that can be added to a core
run Bron-Kerbosch algorithm to find all maximal cliques1in the graph.
mark all neurons that are in in more than one clique
for cliques: biggest to smallest do
if neuron is in more than one clique then
if cliqueSize <= coreSize then

keep neuron in the clique, remove from others
else

remove neuron from the clique
numCores = 0
currentCore = −1
initialize a core
for cliques do
cliqueSize = number of neurons in the clique
coresNeeded = cliqueSize/coreSize
numCores+ = coresNeeded
initialize coreNeeded cores
currentCore+ +
for neurons do
if currentCore has space then

add neuron to currentCore
else
currentCore+ +
add neuron to currentCore

if there are neurons not placed (not part of any clique) then
find cluster among the sender neurons
for each cluster do
coresNeeded = cliqueSize/coreSize
add target neurons to a new core while they fit a core and instantiate more cores if needed
numCores+ = coresNeeded

if there are neurons not placed then
coresNeeded = number of neurons not placed /coreSize
add neurons to a new core(s)
numCores+ = coresNeeded

Chapter 4. Brain-inspired placement algorithm 45

Algorithm 2 shows how we create a map of distances following our design choice.

Algorithm 2 Distance calculation

Require: Graph G = (V ,E), where V are the cores, and the weight in every edge is the number of
connections among them.
dist[i][j] initialized with −1
n is the number of neurons per core
e(i, j) is the number of connections core i is receiving from core j.
for each core i do
for each core j do
if i == j then
dist[i][j] = 0

else
dist[i][j] = math.f loor((n/e(i, j))) + 1

Given that the distance calculation step can generate non-symmetric distances between cores, but
the physical placement doesn’t support that, we also run a verification step to make the distances
between cores symmetric.
If two cores have non-symmetric distances, we can make them symmetric by using the closest or
farthest distance. We can choose what distance will be used given the number of inconsistencies
we generate while assigning the routing path.
To illustrate an approach in using the farther distance, consider a core with 32 neurons. At R1
level, the maximum fan-in of a neuron is 16 neurons per core. At R2 the maximum is 8. Now,
suppose core A sends 9 connections to core B. The distance between A and B will be 1, and they
need to communicate from R1 router level. If core B sends 1 connection to core A, we will assign
the distance between core B to A as 5. By using the farther distance to make the distance between
cores symmetric, we have 8 connections from core A to B marked as inconsistent (since with a
farther distance, we can’t deal with such a high number of connections). If we decided on the
closest distance, thus defining the distance from B to A as 1, we could place all the connections.
However, we need to check that all other neurons in the same half as the sender neuron (i.e., the
additional 15 neurons in this half core) are not sending connections. Otherwise, the neuron in
core A would receive more spikes than stipulated. Our primary criterion for placing neurons into
cores considers that neurons are all-to-all connected; by default, we don’t assume a configuration
where only selected neurons would spike. But it can happen if populations have less neurons
that fit in the portion of the core sending the connection.
In case one core is sending connections to another but without receiving connections back, we
add them even further away, to be able to have a more specific target connectivity. We need to
make the number of connections being sent fit the next router level distance.

Inconsistency An inconsistency can occur when neurons at a core have to listen to different
areas from cores at the same router level or when connections can not be placed. If a neuron
placed in a target core is receiving connections from sender neurons in the left half of a core
reached through an R1 router, then the neuron in the target core can only listen to the left side of
all cores reached through the R1 router. Figure 4.4 shows an example of an inconsistency.

4.2.3. Synapse assignment

The synapse assignment is the solution to the routing problem: for every synaptic connection,
we need to define what set of hardware lines will be used to connect the output of a presynaptic
neuron to the input of a post-synaptic neuron, or in other words, the path the spike will traverse.
To finally place the connections, we now consider the neurons as "senders", meaning that we want
to form groups of neurons inside the same core based on where they send their spikes. For each
core, we identify what group of neurons has the same post-synaptic neuron. We need to allocate

46 4.3. A placement example

Figure 4.4.: In our scheme, a target core can receive spikes from the same subset of neurons in
all the cores reached through the same level router. At the R1 level, each neuron can
listen to either the left or right side of the other cores. For instance, the target core in
red can receive connections from neurons placed in the red area (reached through R1
router). If a neuron needs to listen to two different areas, as depicted in the image,
this generates an inconsistency.

these neurons to different "slices" inside the same core (see Figure 3.3 for a better understanding
of slices and their specificity).
We start this process by allocating the neuron into slices of cores that are nearby. This way, we
guarantee the placement of the highest amount of connections. The idea is to force the incon-
sistencies to be generated as distantly as possible. Since the number of connections decays with
distance, this let us generate a minimum number of inconsistencies.
The inconsistencies are marked in the connections, not in the neurons. If a neuron cannot be
placed in a specific slice, all its connections are flagged as inconsistent. As described in Sec-
tion 3.1, we want to provide some rows of "full address bits" in our design. These rows can be
used to place some of the flagged connections.
After a first loop placing the connections, we can go over all the inconsistencies generated. For
every connection marked as inconsistent, we check all the connections the sender neuron has. If
the number of flagged connections is higher than the number of placed connections, we check
if moving this neuron to a new core would reduce the number of flagged connections. If so, we
change the neuron position; otherwise, we try to fit the inconsistencies using the "full-address
bits" rows.
Algorithm 3 describes the placement of the connections among neurons.

4.3. A placement example

Let’s consider a simple network that follows our hardware design. Figure 4.5 shows the distribu-
tion of connectivities. This network contains 16 neurons grouped in four clusters of four neurons
each. Each cluster is connected to the neighboring clusters, with decay in the number of con-
nections (as seen in the right side of Figure 4.5). Following our approach, each cluster would be
placed in a different core, which would lead to the use of four cores.
Let’s have a closer look at the connections among the populations. To make easier the idea of dis-
tances, let’s consider that the four populations are placed on a 1d line, as described in Figure 4.6.
The most distant connections determine the router level we need to place the network following
our hierarchical approach. In this example, the maximum distance for connections is 2. Note that
there are cores apart by distance 3; however, since there is no connection among them, we need
the router up to distance 2.
This seems evident by looking at the network, but to determine the level of router needed, we
need to count the number of connections among the cores. Figure 4.7 shows how the connections
are distributed among cores more visually.
By definition, all cores receiving more than half of their connections compared to the number
of neurons in a core (in a pairwise manner) are at a distance 1, between a fourth and half, at a
distance 2, and so on. We calculate the distance using Equation 4.1. As an example, core 0 is

Chapter 4. Brain-inspired placement algorithm 47

Algorithm 3 Synapse assignment

Require: Graph G = (V ,E) with outgoing connections and matrix dist[i][j] of the distances be-
tween cores
sort all pairwise cores according to the distances between them (from closest to farthest).
for each pair in the sorted list do
if dist[i][j] <= 0 then

continue
for each neuron in the receiving core do

gather all neurons in the sending core that are sending connections to the target neuron
verify if neurons fit in the slice size (Algorithm 5)
if neurons sending connection were not placed yet then

find a slice available
add neurons sending connection to the slice
mark target synapse to listen to the slice

else
if all neurons were already placed and are in the same slice then

evaluate target neuron (Algorithm 6)
else
if not all neurons were placed then
if neurons placed are in the same slice then

add the unplaced neurons to the slice
evaluate target neuron (Algorithm 6)

if some neurons were placed but not on the same slice then
if target neuron is not listening to any area then

identify slice with majority of connections
target neuron listen to that slice
add unplaced neurons to that slice
flag connections from neurons in other slices as inconsistent

else
add unplaced neuron to the slice target neuron is listening to
flag connection from neuron in other slices as inconsistent

evaluate inconsistencies (Algorithm 4)

Algorithm 4 Synapse assignment - evaluation of inconsistencies

Require: list of flagged connections
for every flagged connection do

count the number of flagged connections for the sender neuron
if number flagged connection > not flagged connection then

move neuron to a new core
recount number of flagged connections
if number flagged connections decreased then

keep neuron in the new location
else

move neuron back to original position
for every flagged connection do
if target neuron has full adress rows available then

place connection
if number of flagged connections is > 0 then

notify the network couldnt be placed completely

48 4.3. A placement example

Algorithm 5 Synapse assignment - verification of slice size

Require: set of neurons sending connections and size of the slice
if number of neurons sending connection > slice size then

sort neurons by number of sending connections
while number of neurons sending connection > slice size do

get neuron with small number of connections
flag its connections as inconsistent
remove neuron from the sending connection group

Algorithm 6 Synapse assignment - evaluation of target neuron

Require: synapse information on target neuron and position of source neurons
if target neuron is not listening to any area then

target neuron listens to the area of the source neurons
else
if target neuron is listening to another area then

flag connections as inconsistent

Figure 4.5.: A simple network with 16 neurons and the decay of connectivity given the distance
among neurons.

Figure 4.6.: Simple network and its connections among populations. Clusters were placed on a 1d
line. Purple neurons are at a distance of one from blue neurons, two from pink, and
three from green neurons. Blue neurons are at a distance of one from purple and pink
neurons and a distance of two from green neurons. Pink neurons are at a distance of
one from blue and green neurons and a distance of two from purple neurons. Green
neurons are at a distance of one from pink neurons, two from blue neurons, and three
from purple neurons. Note that the distances among cores is symmetric.

Chapter 4. Brain-inspired placement algorithm 49

Figure 4.7.: Connectivity among cores. Each square represents a core with a set of neurons. The
values on the edges are the number of connections each core is receiving. The connec-
tions here are seen on a more general level, i.e., it doesn’t matter which neuron will
receive the connection; we are just interested in the connections arriving at the core.

floor

Figure 4.8.: Map of the distance between cores. The distance gives us information about what
router level we need to use. Distance zero means a core is talking to itself. Distance
-1 means there is no definition of distance between the cores.

receiving eight connections from core 1, thus d(0,1) = ⌊4
8 ⌋+ 1 = 1 With this, we can create a map

of distances between all cores, as seen in Figure 4.8.
With the distances defined, we know the maximum router level needed to place the connections.
To place our example network, after defining the number of cores and distances among them,
we loop over all neurons, starting with nearby cores. In this example, we will place connections
between all the cores at a distance of one, then a distance of two, and so on.
Now we look at the connections that go across cores. We start with the connection from core 1
to core 0. Neuron 0 is receiving connections from neurons 4,5. For core 1, we can mark neurons
4,5 to the right and 6,7 to the left. Neuron 0 writes 1 to the 1-bit R1 level to receive spikes from
the right side of R1 cores. Neurons 1,2, and 3 receive the same connections as neuron 0, so the
distribution of connections is the same.
From core 0 to core 1: neuron 4 receives connections from neurons 2 and 3. For core 0, we mark
neurons 2,3 to the right and 0,1 to the left. We do the same with neurons 5,6, and 7, keeping the
results of neuron 4. Neurons in core 1 receive spikes from the right side of R1 cores.
From core 2 to core 1: neuron 4 receives connections from neurons 8 and 9. For core 2, we mark
neurons 8,9 to the right and 10,11 to the left. We do the same with neurons 5,6, and 7, keeping
the results of neuron 4. In core one, neurons receive spikes from the right side of R1 cores.

50 4.4. Summary

From core 1 to core 2: neuron 8 receives connections from neurons 6 and 7. Neurons 6 and 7 are
already assigned to the same side, so we keep it this way, and neurons on core two are marked to
listen to the left side of R1 cores. We keep the same results for neurons 9,10, and 11.
From core 3 to core 2: neuron 8 receives connections from neurons 12 and 13. Since no neuron
was placed yet in core 3, but neurons in core 2 are already listening to the left side of R1 cores,
we mark neurons 12 and 13 as to the left, and 14 and 15 to the right side. The same results are
kept for neurons 9,10, and 11.
From core 2 to core 3: neuron 12 receives connections from neurons 10 and 11. Since neurons 10
and 11 are on the same side already (left), neurons in core 3 are marked to listen to spikes from
the left side of R1 cores. The same results are kept for neurons 13,14, and 15.
Now we can place connections at a distance 2. From core 0, only neuron 8 is sending R2 con-
nection. Neuron 8 was placed on the top-right corner, and neurons in core 1 can listen to the
top-right area of R2 cores.
Core 1 receives a connection from neuron 12 at a distance 2. Neuron 12 was placed in the top-
right corner; thus neurons in core one can accept spikes from the top-right area of R2 cores.
Core 2 receives a connection from neuron 3 in core 0. Neuron 3 was placed on the bottom-right
corner of core 0; thus neurons in core two can listen to spikes from the bottom-right area of R2
cores.
Core 3 receives a connection from neuron 7 in core 1. Neuron 7 was placed at the bottom-left
corner of core 1; thus neurons in core three can listen to spikes from the bottom-left area of R2
cores.
All connections were placed, and no inconsistency was found.

4.4. Summary

The placement algorithm defines how neurons and synapses can be allocated on hardware. We
designed our hierarchical brain-inspired placement algorithm based on the hardware constraints
imposed by the routing architecture. The physical relationship between cores and routers limits
the number of connections that neurons in different cores can share. Our algorithm follows three
steps: neuron placement, distance calculation, and synapse assignment. The neuron placement is
responsible for allocating the neurons of a user-defined neural network into the hardware cores.
This is done by finding groups of neurons that are all-to-all connected. After defining the position
of neurons into cores, we calculate the router level we need to allow the placement of the existing
connections. The router level is directly related to the number of connections two cores can share
and their physical distance. The third step is the definition of synapse allocation. The synapse
allocation can be seen as an arrangement of neurons inside each core to avoid or reduce the
number of inconsistencies. An inconsistency is found when a synapse needs to receive inputs
from neurons in different slices of a core or when the neuron does not have synapses available
to add a connection. Our algorithm was designed to place canonical networks based on WTA
architecture, which fit our hardware perfectly.

"You asked us a question and she knows the
answer! Why ask if you don’t want to be
told?"

Ron Weasley, Prisoner of Azkaban, Harry
Potter

5. Results

The placement algorithm described in Chapter 4 is one of the results of this Thesis. We not
only provide a framework to place a network into the hardware structure, but we can also use
it to analyze the hardware configuration parameters. Our algorithm was created based on the
canonical network structure that matches our hypothetical neuromorphic processor, described in
Section 4.1. As such, it succeeds in placing it optimally1.
Here, we provide some memory use analysis and a cost function that can be used to calculate
memory and area while designing new chips. Moreover, although the networks we focus on fol-
low a similar topology, we expect real network applications to differ from our hardware structure.
For instance, the networks we find in the brain or neuromorphic applications do not have all the
populations with the same number of neurons. To validate our placement algorithm, we tested
it with variations of our canonical network. Since the placement is not a trivial problem, the
solution for generic networks is hard to assess. We don’t know the Ground Truth (GT) for a net-
work with different structures, such as randomly connected. However, by using a network that
fully matches the hardware structure considered, we can define a GT placement and compare the
placement of variations of the network to it.

5.1. Memory use analysis

While designing a new chip, parameters are often decided by an arbitrary design decision: num-
ber of neurons per core, number of cores, number of synapses per neuron, etc. All of these param-
eters incur a cost for chip fabrication. Deciding what parameters can still provide the necessary
functionalities while reducing costs is extremely valuable when prototyping a chip.
To support the memory reduction assumption from our method, we present an analysis by propos-
ing a function that, given some hardware configurations, can estimate the cost in terms of memory
bits per neuron and chip area.
We present the calculation for our architecture and show how we calculate the costs for already
known neuromorphic processors, namely, DYNAP-SE and TrueNorth.

5.1.1. Defining the cost function

In the following, we use A and R with various subscripts for areas and N with the same subscripts
for numbers, indicated by the subscripts per next higher unit. The subscripts are C for core, N
for neuron, S for synapse, and ⊕ for soma. Thus AC is the area of a core, NN is the number of
neurons per core, NC is the number of cores per chip, etc.
Thus, in a general form, the area of a chip is given by the area of all cores plus the area taken by
the router:

Achip = NCAC +Rchip (5.1)

Where Rchip is the area for the Routing overhead at the chip level, described later in Subsection
Routing overheads.
Similarly, the area of a core is given by the area of all the neurons in the core plus the area taken
by the router at the core level. Expanding AC gives

1By optimally, we mean the algorithm can find the neuromorphic processor structure that originated the network, thus
not wasting neurons or cores.

53

54 5.1. Memory use analysis

Achip = NC(NNAN +RC) +Rchip (5.2)

RC is the routing overhead at the core level.
The area of a neuron, AN , is the area of the soma, plus the sum of the areas of all the synapses,
plus the routing overhead within the neuron, RN

AN = A⊕ +
T∑
t=1

NStASt +RN (5.3)

where there are T synapse types.
Substituting into (5.2) gives

Achip = NC(NN (A⊕ +
T∑
t=1

NStASt +RN) +RC) +Rchip (5.4)

Synapse area

The area occupied by some synapse types may depend on factors such as the fan-outs of the
routers and if they are learning synapses, for instance.
Generally, we can separate two main categories of synapses in any routing scheme: those called
Learning synapses which participate in the learning process and will be denoted with the subscript
SL; and those called Fixed synapses which do not participate in the learning process and will be
denoted with the subscript SF . With these two synapse categories, equation (5.3) for the area of a
neuron becomes

AN = A⊕ +NSLASL

T∑
t=1

NStASt +NSFASF

T∑
t=1

NStASt +RN (5.5)

In all of the above, the ‘routing overhead’ area terms R∗ have not been expanded. Note that each
of these terms should include not just the area required for active router elements but also the
area necessary for de-multiplexers, multiplexers, etc. and also simple wiring attributable to the
given level in the chip–core–neuron hierarchy. In practice, these terms will depend, in general,
on the number of cores, neurons, and synapses:

Rchip = rchip(NC ,NN ,NS1
, . . . ,NST)

RC = rC(NC ,NN ,NS1
, . . . ,NST)

RN = rN (NC ,NN ,NS1
, . . . ,NST)

so we’ll have to define the functions rchip, rC and rN . These functions will be specific for each
architecture used.

In a hierarchical architecture, Rchip is going to be composed of the area required for all the levels
of router blocks R0, R1, R2, ... (and any other router levels needed)2 in the router tree plus the
area required for de-multiplexers, multiplexers, etc.:

Rchip = NR0AR0 +NR⩾1AR⩾1 +Admux +Amux +Aetc

2If the hardware contains no hierarchical structure for the router levels, all the terms related with R ⩾ 1 can easily be
ignored, simplifying the costs to the R0 term.

Chapter 5. Results 55

Assuming that Admux, Amux and Aetc are going to be constant and independent of NC , NN , etc.,
we can replace the sum of these terms with α, and expand the NR∗’s as follows:

Rchip =
NC

Φ0
AR0 +

NC /Φ0 − 1
Φ⩾1 − 1

AR⩾1 +α (5.6)

Substituting Rchip from (5.6) and AN from (5.9) into (5.2) then gives:

Achip =NC(NN (A⊕ +NSLASL(NC ,Φ0,Φ⩾1) +NSFASF +RN) +RC)+

NC

Φ0
AR0 +

NC /Φ0 − 1
Φ⩾1 − 1

AR⩾1 +α ,
(5.7)

where ΦN is the fan out of a router level.
Assuming the area of the Pulse Extender, the Differential Pair Integrators (DPIs), an appropriate
portion of the MUX block, and the Learning and Stop Learning circuits can all be counted within
A⊕, and that anything else (e.g. wiring) that would have been counted within RN is negligible, we
can set the latter to 0. RC can cover the AER Row Decoder, Encoder/Decoder, SRAM, Append,
Routing Logic, and +1 blocks and will depend on the numbers of cores, neurons per core, and
any synapses that rely on the routers SHR, per neuron:

RC = rC(NC ,NN ,NSHR
)

Thus the final area cost function (ignoring α) is:

Achip =NC(NN (A⊕ +NSLaSL(NC) +NSFASF)+

rC(NC ,NN ,NSHR
)) +NCAR1 + (NC − 1)AR⩾2

(5.8)

For each new hardware, what is necessary to define to get area values from this cost function are:

A⊕ The area of the pulse extender, DPIs, MUX, soma, learning, and stop learn-
ing costs. per neuron.

NSL The number of learning synapses per neuron.
aSL The area of a learning synapse.
ASF The number of fixed synapses per neuron.
aSF The area of a fixed synapse.
ASHR

The number of router-dependent synapses per neuron.
rC(NC ,NN ,NSR) The area of the AER Row Decoder, Encoder/Decoder, SRAM, Append, Rout-

ing Logic and +1 blocks per core per neuron as a function of the number of
cores, number of neurons per core, and number of synapses that are router
dependent.

AR0 The area of an R0 router.
AR⩾1 The area of an R1 or higher router.
Φ0 The fan out of R0 router.
Φ⩾1 The fan out of R1 or higher router.

Once these are known, one can plot Achip as a function of the number of cores NC while holding
the number of neurons per core NN constant or as a function of the number of neurons per core
while holding the number of cores constant.
This is a general formulation and can be considered for any architecture. Now, we can add as-
sumptions regarding the routing architecture, how synapse types are implemented, and so on.

5.1.2. Specifying parameters in the area cost function

We can now incorporate specific restrictions regarding the architecture of the hardware we are
designing in the cost function. All the area values specified here are normalized by the size of a
CAM cell. This normalization allows us to compare the size of the current design with already
produced chips. The size of the CAM cell used is 3.85µ ∗ 4.945µ.

56 5.1. Memory use analysis

Synapse areas

With the proposed hierarchical routing, the area occupied by some synapse types depends on the
fan-outs of the routers and the depth, h, of the router tree. Given that h is itself a function of NC ,
Φ0 and Φ⩾1, the area ASHR

of a hierarchical routing synapse is a function of these three variables:

ASHR
= aSHR

(NC ,Φ0,Φ⩾1)

Adding cores will affect the area occupied by these synapses.
In this hierarchical design, besides the learning and fixed synapses, the area of a synapse also
depends on the distance among neurons (or to which router level they need to reach). This brings
us to other two categories of synapses: External synapses (that represent long-range connections),
which participate in the hierarchical routing scheme, that will be described with the subscript SE ;
and those called Recurrent synapses which do not participate in the hierarchical routing described
with the subscript SR. Figure 5.1 shows the external and local synapses considered in this design.
With these two synapse types, equation (5.3) for the area of a neuron becomes

AN = A⊕ +NSEaSE (NC ,Φ0,Φ⩾1) +NSRASR +RN (5.9)

Local synapses In this architecture, we use simple switches to control hardwired connections
in a local core. NSR should be equal to NN . Every neuron will have NN rows for local core
connection. Some delay on the handshake circuits of the neuron output can be added, so every
row only has two bits latch to choose different DPI and 1-bit latch to control on/off. This way,
NSRASR = NN ∗ 3 ∗Alatch, where Alatch is 1.508 CAM cells. What leads to

NSRASR = 4.5247 ∗NN (5.10)

External synapses The external connections, as explained before, participate in the hierarchi-
cal routing scheme; thus, NSEASE are dependent on NN and on NC . The external synapses are
subdivided into two types: the ones that contain complete addresses bits, i.e., are capable of cre-
ating specific connections between neurons, that will be defined by Nf ull and Af ull ; and the ones
that have a constrained number of address bits, i.e., since they can’t reach all the routers, they use
fewer bits to differentiate the address space. These will be defined by Nconstrained and Aconstrained .
This way, NSEASE = Nf ullAf ull +NconstrainedAconstrained .
NSE = log4NC +Nf ull , where Nf ull is the number of full address rows.
For each full address synapse

Af ull = [log2(NC +NN)ACAM +AP E + 2 ∗Alatch] (5.11)

Figure 5.1.: Basic core architecture proposed in the hierarchical scheme.

Chapter 5. Results 57

Any other synapse will depend on the router level, then Aconstrained = [log2NN + (log2NN − 1) +
(log2NN − 2) + · · ·+ 1]ACAM + log4NC ∗ [AP E + 2 +Alatch].
This formulation raises a conflict: if we assume the CAM row for the furthest core is log2NN bits,
then we have already added some constraints on NC and NN . log2NN should be equal to log4NC .
Assuming the CAM row for the furtherst core is log4NC bits, then

Aconstrained = [(log4NC + 1)
log4NC

2
]ACAM + log4NC[AP E + 2 ∗Alatch] (5.12)

AP E = 14.8568 CAM cells. This way, the total cost of external synapses, with all the substitutions,
is given by:

NSEASE = Nf ullAf ull +NconstrainedAconstrained

= Nf ull ∗ [log2(NC +NN) + 17.8728]+

Nconstrained ∗
{
[(log4NC + 1)

log4NC

2
] + log4NC ∗ 17.8728

} (5.13)

Other synapses types Every synapse will have two bits to choose one of the four different
synaptic types available (AMPA, NMDA, GABAA, GABAB); This way, equation 5.4 will become:

Achip = NC(NN (A⊕ +NStASt +RN +ASRAM) +RC) +Rchip (5.14)

where ASRAM is the area of a SRAM word. In this architecture, the area of the SRAM is not added
to RC because every neuron has a SRAM word for routing.

ASRAM = ASRAMcell
∗ (4log4NC + log2NN) (5.15)

Specifically, the SRAM cell area ASRAMcell
is 0.7848 CAM cells, thus we can reduce the equation

to:

ASRAM = 0.7848 ∗ (4log4NC + log2NN) (5.16)

Soma

In our architecture, the soma has a fixed size: A⊕ = 336.251 CAM cells.

Routing levels

The hierarchical routing architecture used here is being designed by Zhe Su and has been ex-
plained in Chapter 3. As shown in Figure 5.2, this architecture contains different levels of the
router: R0 connecting neurons inside the same core, R1 connecting a fixed number of cores, and
R2 connecting R1 routers, and so on.
For R⩾ 1, the fan-out is a power of two. This means that if we want to add more cores per R1
router, if the router has Φ1 = 4, then we will need to add four more cores per R1 router. Similarly,
for the next level of routers, the R2 routers, we can not add it with a single R1 router. And so on
all the way up the tree. Assuming that all routers above R0 have the same fan-out, Φ⩾1, the height
of the router tree is given by

h = 1 + logΦ⩾1

NC

Φ0

The functions rchip, rC and rN , which include the areas occupied by the routing, will have to be
written in terms of h and/or Φ0 and Φ⩾1. And the area of the synapses also depends on h, Φ0, and
Φ⩾1 in this hierarchical design.

58 5.1. Memory use analysis

Routing overheads

Routing cost per neuron This architecture’s routing cost per neuron does not depend on other
variables since it is only a handshake module. This way, RN is a constant.
RN = 71.229 CAM cells.

Routing cost per core RC is still being designed and is mainly decided by the cost of ar-
biters Aarbtree. The arbitration mechanism was optimized to a hierarchical arbitration with fewer
arbiters and faster speed. The area of the basic element in the arbiter tree now is Aarbtree =

n ∗ (N
1
n
N − 1), where n is the hierarchical depth.

Usually, the hierarchy depth is n = log4NN . This way, the arbiter number is 3∗log4NN . This leads
to RC = 3 ∗ log4NN ∗Aarbiter + β, where β is a constant representing other asynchronous pipeline
circuits and encoder. Although they also change as NN changes, they are not a critical part of the
area, so they can easily be ignored. The arbiter area Aarbiter = 8.1896 CAM cells. Thus

RC = 24.5688 ∗ log4NN (5.17)

Routing cost per chip The cost of routing per chip Rchip will increase as NN and NC increase.
NN affects the bus data width. NC will also affect the bus data width and the router number.
In this architecture, by choosing four leaves nodes (fan-out) per router Φ⩾1 = 4, it is possible
to optimize the data packet size, which affects source memory size, dynamic routing power and
NoC architecture area cost. And because of the mask routing used at every level, the number of
leaves nodes per router does not have to be a power of two. But considering source memory size,
dynamic routing power, hierarchical depth, hierarchical design flow, and NoC architecture area
cost, four leaves nodes per router seems like the best choice.
With this, we can simplify the calculation of the area cost, and we can ignore the increase of
router area by changes in the NoC architecture.
This way,

Rchip =AR ∗ (NR + 1) +α

= AR ∗


NC
4

(
1− 1

4
log4 NC−1

)
1− 1

4

+α

= AR ∗
NC − 1

3
+α ,

(5.18)

where α is a constant representing other asynchronous pipeline circuits on the long wires, bias-
gen, and other interface circuits.
The router area is AR = 22,768.10 CAM cells. Thus,

Rchip = 7589.366 ∗ (NC − 1) +α (5.19)

Figure 5.2.: Schematic of the hierarchical routing scheme designed by Zhe Su.

Chapter 5. Results 59

Total costs

With all the variables defined, we can put all of them together. The final cost function for this
architecture depends on four variables: NN , NC , Nf ull and Nconstrained ; and two constants: α and
β.
This way, the final cost function can be written as:

Achip = NC(NN (A⊕ +NStASt +RN +ASRAM) +RC) +Rchip

= NC

{
NN

{
336.251 + 4.5247 ∗NN+

Nf ull ∗
[
log2(NC +NN) + 17.8728

]
+

Nconstrained ∗
{[

(log4NC + 1)
log4NC

2

]
+ log4NC ∗ 17.8728

}
+

71.229 + 0.7848 ∗ (4log4NC + log2NN)
}
+

24.5688 ∗ log4NN + β
}

+ 7589.366 ∗ (NC − 1) +α

(5.20)

Additonal Constraints

We could additionally consider other types of constraints, for example, the "powers of two con-
straints". This constraint would enforce the size of cores, and the number of cores follows a
"power of two" structure (a core could have 2, 4, or 8 neurons but not 3 or 5, for instance). For
this, we have to replace NC and NN with 2c and 2n respectively, as in (5.21), and vary c or n while
keeping the other constant instead.
Then we can define c = ⌈log2NC⌉, n = ⌈log2NN ⌉ and st = ⌈log2NSt ⌉ and rewrite equation (5.4) as

Achip = 2c(2n(A⊕ +
T∑
t=1

2stASt +RN) +RC) +Rchip (5.21)

Number of bits per neuron

The number of bits per neuron depends on the number of router levels and the number of rows
available for each router level.
The connections inside a core are hardwired, and there is no need for extra memory bits. Connec-
tions from an R1 router are defined for a single bit: a neuron receives all the spikes from the same
half of all the cores reached through an R1 router. Connections from an R2 router need two bits
to be described: we need to specify the fourth of each core that can be reached. For R3 routers,
each neuron needs three bits, and so on.
This way, the number of bits per neuron depends on the number of router levels3

Bits per neuron =
R∑
i=1

r ∗ i (5.22)

r is the number of rows per router level, and R is the maximum router level. Each neuron has one
row per router level in our proposed architecture, as explained in Chapter 3, Figure 3.2.
Thus, the number of bits per neuron is defined by:

Bits per neuron =
R∑
i=1

i (5.23)

3The number of router levels is directly related to the number of neurons per core. For cores of 16 neurons, for instance,
there is no need to have a R5 router since no connection could be formed using it.

60 5.1. Memory use analysis

5.1.3. DYNAP area cost function

DYNAP has four cores, with 256 neurons per core and 64 synapses per neuron.
We normalize the area of DYNAP-SE to the area of a synapse (SRAM area). Since it is a processor
already available, the values for the area are known:

• synapse area: 1

• neuron area: 78

• core area: 24,164

• 4-core (chip) area: 118152

The area in the DYNAP-SE grows not linearly because of the interface circuits, router circuits,
and some other redundant areas.

DYNAP bits per neuron

DYNAP-SE paper (Moradi et al., 2018) describe the number of bits per neuron given the following
equation:

Bits per neuron = 2 ∗
√
F ∗ log2C ∗ log2N (5.24)

where,

• F is the fan out per neuron (number of outgoing connections)

• C is the number of neurons per core

• N is the total number of neurons

However, it assumes an ideal M (the fan in per neuron) that is not fit for our case. In this case, a
more accurate equation is given by the point where K == C, and K is the number of tags available
per core in DYNAP-SE:

Bits per neuron =
F
M
∗ log2N +M ∗ log2NC (5.25)

where,

• F is the max fan out per neuron (number of outgoing connections)

• M is the max fan in per neuron (number of incoming connections)

• N is the total number of neurons

• NC is the number of neurons per core

5.1.4. TrueNorth area cost function

The physical layout of a TrueNorth (Merolla et al., 2014) core in 28nm CMOS has 240 µm×390 µm.
The neuron area is 2900 µm2, with an additional area of 3 µm2 to store the neuron state.

Chapter 5. Results 61

TrueNorth bits per neuron

In TrueNorth, each neuron can target any axon on any core up to 255 away, i.e., up to 4 chips,
in both x and y dimensions. This is the equivalent of 17 billion synapses; therefore, it uses 26
address bits per neuron.
Each neuron in TrueNorth has a maximum fan out of 256 neurons. When the fan out of a neuron
increases over this limit, we need to make use of a relay neuron, i.e., we need to use a neuron as a
proxy for the remaining connections.
Although the number of bits per neuron does not increase with an increase in the fan out, it does
impact the total bit memory needed to map a network.
An additional relay neuron can lead to the use of a new core, thus, 256 × 26 extra bits. Note
that the increase in the number of relay neurons can amortize this additional memory (by adding
them to the same core) until a new core needs to be used again.
To compare the total amount of memory when mapping the same network to each one of the
architectures, for TrueNorth, we calculate the number of extra cores needed by the relay neurons:

extra cores for relay neurons = ⌈F mod 256⌉/256 (5.26)

Where, F is the fan out per neuron.

5.1.5. Area comparison

The area for this work is calculated by using the cost function presented in Equation 5.20. There
are a few parameters that we need to define to provide a specific value for area: the number
of neurons per core and the number of cores. In order to offer a fair comparison, the number of
neurons per core is fixed in 256 as in TrueNorth and DYNAP. For this architecture and TrueNorth,
we assume all the cores can be placed on a single chip. DYNAP has an architecture with four cores
per chip, so we consider the total area size as the sum of the area up to three cores, and when four
cores are needed, we consider the area of a chip.
Our analysis shows that considering current technology, a chip to fit a network with a mil-
lion neurons and a fan-in/fan-out of roughly a thousand per neuron would require an area of
≈ 0.910e7 mm2 if implemented with our scheme, about 5x more on the DYNAP (≈ 4.4910e7 mm2)
and almost 3x more on the TrueNorth (≈ 2.6810e7 mm2), as shown in Figure 5.3.

5.1.6. Bits per neuron comparison

In our design, the number of bits required to fit a network does not increase with the neuron
fan-in/fan-out. We can increase the fan-in by adding more cores, so the increase in memory is
linear in the number of cores. On the other hand, the TrueNorth architecture has a fixed fan-
in per neuron, and with an increase in fan-in/fan-out, we need to recruit relay neurons from
other cores. This is costly for large networks in which neurons have a large fan-in. Indeed, any
architecture with a fixed fan-in per neuron will not scale well due to the requirement to resort to
relay neurons and will consequently increase memory requirements (Rao et al., 2022). Also, the
fan-in is fixed in the DYNAP architecture. But its mixed source/destination addressing scheme
mitigates the number of intermediate nodes required. Our analysis shows that a network with
a million neurons requires 67000 kb if implemented with our scheme, about 10x more on the
DYNAP (734000 kb) and about 28x more on the TrueNorth (1904000 kb), as shown in Figure 5.4.

5.2. Experiments description

After the verification that our heuristic works as expected for the canonical network, we design
experiments to validate the placement behavior in non-ideal cases. Two canonical WTA networks
were considered for these experiments, based on hardware with 16 neurons per core, and either 7

62 5.2. Experiments description

Figure 5.3.: Area scaling comparison between the TrueNorth (Merolla et al., 2014) and
DYNAP (Moradi et al., 2018) architectures and this work. For comparison, we consid-
ered a core with 256 neurons in all architectures. TrueNorth and DYNAP are existing
chips with well-defined chip areas. We extrapolated their area, given the number of
cores/chips needed for the placement. The chip area for the three architectures is
plotted as a function of the network size.

Figure 5.4.: Memory scaling comparison between the TrueNorth (Merolla et al., 2014) and
DYNAP (Moradi et al., 2018) architectures and this work. For comparison, we con-
sidered a core with 256 neurons in all architectures. The number of bits used by
the three architectures is plotted as a function of the network size. For TrueNorth,
the number of cores, thus, the number of bits necessary to fit our canonical network,
increases approximately quadratically with increasing fan-in/fan-out of the model.
For DYNAP, the memory increases linearly with increasing fan-in/fan-out. In our
proposed architecture, the increase in fan-in/fan-out demands more cores, but the
memory increases slowly.

Chapter 5. Results 63

Figure 5.5.: Placement of deviation of our canonical network by removing a fixed percentage of
neurons. We created 300 network variations for each canonical network (by randomly
removing 1%, 10%, and 25% of neurons), leading to a total of 600 new networks. Each
bar shows the average and standard deviation as a ratio of the number of cores needed
to place the perturbed networks to the required number given the GT for each set of
100 networks. One means both placements use the same number of cores. The red
dashed line marks the canonical network placement. All values are normalized to the
size of the canonical network.

or 70 cores, leading to networks with 112 and 1120 neurons in total. The networks were created
considering the cores were placed in a 1d-line.

5.2.1. Removing neurons and synapses

First, we tested our algorithm using perturbed networks that deviate from the canonical by re-
moving a percentage of neurons (1%, 10%, and 25%). For each one of the canonical networks and
for each percentage of neurons to be removed, we created 100 new networks. Precisely, we created
100 networks by removing 1% of the neurons from the original 112-neuron canonical network,
then 100 networks by removing 10% of the neurons from the original 112-neuron canonical net-
work, and again 100 networks by removing 25% of the neurons. The same procedure was applied
to the 1120-neuron canonical network. This led to a total of 600 new networks that are variations
of the canonical structure.
With this experiment, we evaluate how much deviations from the canonical network affect the
placement algorithm. Our algorithm found solutions very close to the GT for minor deviations
(1% and 10%). More significant deviations (25%) produce solutions that are close to the GT only
in large networks (∼1k neurons). Also, small networks (∼100 neurons) produce more significant
variations in the solution space. These results are interesting, as we expected them to be indepen-
dent of the network size. This is presumably due to the combinatorial search space of possible
networks: for each canonical network, we generate 100 network variations for each proportion
of neuron removal. Thus, we generate 100 networks from the ∼100-neuron network, which can
cover the search space of possible different networks. However, generating 100 networks from a
∼1k-neuron network creates a smaller subset of networks being analyzed.
Figure 5.5 shows the results of this experiment.

Secondly, we also tested the placement algorithm by, again, removing random neurons from the
original canonical network. This time, we continuously removed neurons (from 1 to all the nodes
in the network). This means we generated 100 new networks from each one of the original canon-
ical networks by continuously increasing the number of removed neurons. This experiment helps

64 5.3. Placement of a Recurrent Neural Network

us see the placement fluctuation with small step increments. Furthermore, we see that the vari-
ation in cores usage differs for different network sizes. For the perturbations created based on
the 112-neurons canonical network, we see a maximum variation of 30% in the number of cores
needed (compared to the GT). For the larger networks (originated from the 1120-neurons canon-
ical network), the variation in the number of cores to place them is, at maximally, 5% when
compared to the GT. The results of the placement experiments are shown in Figure 5.6.
For all perturbed networks and network sizes considered, the performance of the placement al-
gorithm is close to the GT performance, indicating an optimal use of the limited resources on the
neuromorphic hardware. And interestingly, the performance gets closer to the GT as the network
gets larger and with more considerable variations. Why this happens is not intuitive; however,
it is a piece of essential information when we talk about scaling up networks and having them
placed automatically on neuromorphic hardware.

5.2.2. Changing network structure

In both previous experiments, we started from networks fitting the hardware and removing neu-
rons (and their synapses) from them. The networks would get smaller, and any populations left
would always fit the cores.
We decided to analyze how much the placement would deteriorate if we changed the intrinsic
nature of the networks. Again, accessing the optimality of general networks is challenging. So we
decided to start again with a canonical network, but instead of removing neurons and synapses,
we will randomly swap edges. The changes in connectivity between neurons can lead to substan-
tial structural differences in the network.
Starting with a canonical network (with a total of 112 neurons and 16 neurons per core), we
swap an increasing number of edges. By swapping edges, we mean adding and removing edges,
given how much we want to change the network. For instance, if we want to change the network
structure by 10%. Then we will randomly change n edges, where n is the number of edges in the
network times the percentage we are swapping. We randomly select 2n pairs of neurons that will
lead to n edges to be removed and n to be added4. The results of this experiment can be seen in
Figure 5.7.
In the previous experiment, we guaranteed that the network would fit the hardware structure
provided. By swapping edges, we can now form populations with more neurons than fitting a
core or with more connections among populations that our hypothetical processor would accept.
These differences in network topology force us to use more cores to fit them. It is really hard to
assess the optimality of a network placement for a random network.5 On average, the placement
of the deviations of our canonical network needed 18 cores, which is more than double that nec-
essary for our canonical network. However, it is important to notice that the increase in number
of cores, although demading more physical area on a chip do not scale up the memory needed to
place the network.

5.3. Placement of a Recurrent Neural Network

RNNs were designed to learn sequential or time-varying patterns. An RNN is a neural network
with feedback connections (Medsker and Jain, 2001). Their architectures range from fully inter-
connected neurons without distinction of input layers to partially connected with distinct input
and output layers.
Neural oscillations are a fundamental mechanism that enables the synchronization of neural ac-
tivity within and across brain regions and promotes the precise temporal coordination of neural
processes underlying cognition, memory, perception, and behavior (Neustadter et al., 2016).

4Note that we can "add" an existing edge and "remove" a non-existing edge.
5We explain in the Chapter 6 that we can calculate the minimum number of clusters and bits necessary for any network

following information theory analysis. If a solution exists, we can figure out how far from it we are.

Chapter 5. Results 65

(a)

(b)

Figure 5.6.: Placement of deviations of our canonical network by removing an increasing per-
centage of neurons. The red dashed line marks the canonical network placement. For
each one of the canonical networks, we remove an increasing number of neurons and
place the perturbed network. (a) shows the result for the ∼100-neuron network, and
(b) for the ∼1k-neuron network. Note that for the perturbed networks, there is some
fluctuation in the number of cores needed; however, it stays close to the ideal case.
The Y axis shows the ratio of the number of cores needed to place the perturbed net-
works to the number required for the canonical network.

66 5.3. Placement of a Recurrent Neural Network

Figure 5.7.: Placement of deviations of our canonical ∼100-neuron network by swapping an in-
creasing number of edges. The red dashed line marks the canonical network place-
ment (i.e., created based on a processor with seven cores). It is not trivial to define
what is the optimal placement for a random network. Every new network placed
has a different number of random edges added or removed, changing the network’s
topology. The average number of cores needed to place the deviations of our canoni-
cal network is 18, with a standard deviation of 3 cores.

The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means
for implementing neural coupled oscillators on compact, low-power, spiking neural network
hardware platforms (Krause et al., 2021). Here, we reproduce this RNN for coupled oscillators to
show the validity of our placement. Figure 5.8 shows the structure of the network used.
The network consists of six populations. Three are excitatory, with sixteen neurons all-to-all
connected, and three are inhibitory, with four neurons all-to-all connected. The populations
with sixteen neurons share 16 connections between populations per neuron, i.e., all the neurons
from one population send a connection to every other neuron in the next population. The same
happens for the inhibitory populations with four neurons each. Also, excitatory populations send
16 connections to the inhibitory ones, and they send back four connections.
Remember that in our architecture, the number of connections between populations is related
to the distance and the number of neurons per core. To share sixteen connections between two
populations, the minimum number of neurons per core needs to be 32. With 32 neurons per
core, at a distance of 1, we place up to sixteen connections, at a distance of 2, eight connections,
at a distance of 3, four connections, and so on. Also, at every distance, a neuron can listen to a
subpopulation of all the other cores that can be reached through that router level.
Figure 5.9 shows two approaches to placing this network in our hierarchical hardware structure.
In Figure 5.9a, the result of our placement algorithm considers 32 neurons per core. With 32
neurons per core, populations that share 16 connections are placed at distance 1; populations that
share 4 connections are placed at distance 3. Between the excitatory and inhibitory populations,
the number of connections is non-symmetric. Excitatory populations send 16 connections to the
inhibitory ones, which send back four connections. We keep the further distance between them
and place the cores at a distance of 3 from each other.
Neurons in cores at a distance of 1 can listen to either the left or the right side of all the cores at
that level. The red population listens to the left side of all the cores from R1, i.e., the cores with
blue and green populations. The second core, containing the blue population, has no neuron
active on the left side, so no connection is formed. The blue population is listening to the right
side of all the cores from R1. Similarly, the third core has the population placed on the right side,

Chapter 5. Results 67

(a)

(b)

Figure 5.8.: RNN used to implement coupled oscillators on neuromorphic hardware. In 5.8a an
example of a coupled oscillator consisting of two reciprocally connected inhibitory
and excitatory neuron populations. In 5.8b the structure of three neuronal oscillators
used by Krause et al. (2021) to model the activation times of the right atrium, the left
atrium and the combined ventricles. Figure adapted from Krause et al. (2021).

which doesn’t generate any connection. However, the green population should receive connec-
tions from the blue population, localized on the left side of the core. If we allow the neurons in
the green population to listen to the blue population, they will also receive connections from the
red population, which is undesirable. We then mark the connections from blue to green as incon-
sistent. The inhibitory populations share four connections. This leads to the use of a R3 router.
At a distance of 3, every neuron can listen to eight different areas, and no connection is marked
as inconsistent. This allows all the connections from the inhibitory population to be placed, but
only a third of the connections from the excitatory populations. Thus, twelve connections are
marked as inconsistent.
With the definitions of inconsistencies, we can loop over them and check if moving a neuron to
another position would reduce the number of inconsistencies. But no solution is found. All the
inconsistencies are kept.
One way to reduce the number of flagged connections (or inconsistencies) during the placement
is, for instance, by changing the number of neurons per core. The number of neurons per core is
heavily associated with the number of connections that can be formed between two cores.
Figure 5.9b shows the placement result when we increase the number of neurons per core to 64.
In this case, the excitatory populations are placed at a distance of 2, given the number of con-
nections among them. At a distance of 2, every neuron can differentiate between four subgroups
from all the cores reached through an R2 router. This gives us enough differentiation to place
all the connections between the excitatory populations. The red population can now listen to
the bottom-right area of all cores reached through R1, where only the green population is active.
The blue population listens to the top-left area of all cores reached through R1, thus only the
red population. And similarly, the green population listens to the top-bottom area of all cores
reached through R1, i.e., to the red population. No inconsistencies are generated. Similarly, the
inhibitory populations can be placed without inconsistencies through an R4 router. Excitatory
and inhibitory populations talk to each other through an R3 router, which allows every popula-
tion to listen to eight neurons. All the connections from inhibitory to excitatory can be placed,
but only eight from the excitatory to the inhibitory, generating eight inconsistencies.
In our current implementation, we flag connections and can use the available full-address rows

68 5.4. Summary

to add them in order to fit the network. This placement is an excellent example of how vital
hardware and software co-design is. Of course, increasing the core size gives us more flexibility
in the placement, but we can see a waste of neurons in each core. Other approaches we can take
to increase the flexibility of placement in this structure is, for instance, to increase the number of
rows per neuron for each router level.

5.4. Summary

Our placement algorithm can place the network perfectly when using a network that matches our
hardware design. To evaluate the placement in different conditions, we performed tests where
the network topology was modified by either removing neurons or swapping edges. We show
that the algorithm can still find a placement for the network in both cases. We also show how
the placement works for a RNN application and how the software-hardware co-design approach
can help to guide chip design. We can identify compromises and alternative solutions for both
hardware and software by evaluating automatic software placement and analyzing the hardware
structure. More than that, we also provide a scaling comparison between the memory and the
area necessary to place a network using our routing scheme and comparing it with TrueNorth
and DYNAP architectures. Since our designed architecture has yet to be available, we don’t have
accurate measurements of its size. However, we provide an area cost function that can also be
adapted to other architectures. It is interesting to notice that our hierarchical routing scheme
needs significantly less memory to create network connectivity, but the scaling in the area is not
as high. This occurs because of our current technologies for designing the neuron and synapse
circuits. Nevertheless, we can still provide an example of how to scale up our chips for networks
with high fan-in and fan-out.

Chapter 5. Results 69

(a) Placement on cores with 32 neurons. A core listens to all the other cores
that can be reached through the same router. This generates inconsis-
tencies with this placement where the green population should listen to
the blue but not to the red one.

(b) By increasing the core size to 64 and having 16 connections between
cores at a distance of 2, we can reduce the number of flagged connec-
tions.

Figure 5.9.: Results of the placement of the oscillator RNN network. Circles represent the cores.
Colored areas mark active neurons that are sending and receiving spikes. The number
inside the colored areas show the number of neurons active. Areas with 16 neurons
are excitatory populations and with 4 neurons are inhibitory. Values on edges repre-
sent the router level the connection has to use. Red edges indicate that some or all
connections can not be placed. In 5.9a, the placement considers a core of 32 neurons.
In 5.9b, the placement considers a core of 64 neurons. The flexibility in hardware pa-
rameter choice can lead to better design choices in the software-hardware co-design
framework.

70 5.4. Summary

"One never notices what has been done; one
can only see what remains to be done."

Marie Curie

6. Discussions

Neuromorphic engineering and computing have emerged as exciting and attractive research ar-
eas. Its shift from the conventional von Neumann architecture towards the development of ultra-
low power circuits and systems provides excellent advantages in energy efficiency, power con-
sumption, and adaptability to complex tasks that demand interaction with the environment.
Since its creation, neuromorphic engineering has significantly evolved and nowadays not only
deals with hardware implementations but also with computing and algorithms.
In recent years, we have seen the creation of a plethora of machine learning algorithms that deal
with big data and use massive computer clusters to harvest information. And although this can
offer state-of-the-art solutions, they ignore a current challenge: the use of those algorithms in
power-critical applications, such as edge computing. Our goal is to have hardware and software
that can interact with the environment and sense and process information within constrained
resources.
These challenges brought us to the research presented in this Thesis. This Chapter provides
a reflection on the research process, the overall impact and implication of its outcomes, some
current limitations, and recommendations for future research.

6.1. General remarks

Neuromorphic engineering as a research field integrates a wide range of domains and applica-
tions: biology, physics, mathematics, computer science, electronic engineering, robotics, VLSI
circuits, and technologies, among others. To mimic brain-like capabilities, the machine-learning
community resorts to mining information from big datasets. Mainly, they focus on retrieving and
extracting relevant information or patterns from an immense volume of data. The computational
resources and power necessary to do so are outstanding and a luxury not found easily in solving
real-world problems. Having bio-inspired technology, architectures and algorithms will pave the
way for the next breakthrough in understanding the brain.
Both biological and VLSI implementations of neural systems share physical limitations imposed
by the machinery where they are implemented, and this machinery has a crucial effect on the
computational algorithm used.
The vision that we should be able to create electronic systems that operate like biological brains
brought us already to event-sensor systems and offered us new ideas and breakthroughs. How-
ever, we still need to overcome the problem raised by the interaction of modules, cores, and chips.
Neurons are a particular type of cell, and they communicate with each other through synapses,
i.e., they have a direct link. Their nature of communication is both analog and digital. Even more,
in the brain, the proportion of white matter (the part of the brain that holds the synapses) tends
to grow when the number of interacting modules grows or when the brain size increases (Zhang
and Sejnowski, 2000). This also happens for the communication of modules on VLSI systems:
the costs of memory and area are higher to create the connections than to processing events.
The communication between the neurons in VLSI design is currently a major liming factor for
scaling up the systems. The degree of connectivity allowed within chips, and inter-chips highly
depends on the structure and approach used (in other words, on the designed routing scheme).
Also, given the intrinsic difference in the nature of analog hardware, inter-chip communication
needs different approaches than the ones used by traditional fully digital computers. That said,
we envision that technologies that allow scaling of the connectivity among cores and chips will
dominate, moving in the direction of embracing digital and analog components, as we see in the
natural world. This will happen not only by developing new materials and hardware technology

73

74 6.1. General remarks

but also by new algorithms and approaches for computation.
By now, the term neuromorphic has been used to describe anything that, even vaguely, relates to
brain-like structures. The diverse nature of this neuromorphic research field makes it challenging
to analyze and compare different systems. It is a concrete need to have an explicit computational
stack, definition of standards, and benchmarks. And that will allow us to build an electronic sys-
tem that interacts with the environment, reading event information from sensors and processing
them in real-time with low energy like the brain does.

6.1.1. The future of neuromorphic systems

One critical insight and implication of this work is to bring awareness to the future directions of
neuromorphic computing systems. Neuromorphic computing is bringing a considerable paradigm
shift from classical computing to the table.
Standardizing a computing framework will allow analyzing and comparing different neuromor-
phic systems over real-world applications. With better performance evaluation, we can make
better-informed decisions about the materials chosen to implement them, their architecture, and
circuit designs. And this advance in hardware implementation can, in turn, bring innovations in
the computation paradigm and algorithms we are using today. However, more than developing
new technologies or designing new SNN, this new neuromorphic system also needs to account
for algorithms, benchmarks, datasets, simulation systems, and a way to have a fair comparison
with classical ANN models.
The co-design approach between hardware and software will also impact the design and evolu-
tion of neuromorphic systems. We discuss it in more detail in Section 6.2.7.

Learning algorithms

Classical AI algorithms use deep learning and indeed perform impressively (Schmidhuber, 2015).
However, the computational power and energy they require are increasing dramatically, and it
might become completely unsuitable (a Hardware Revolution, 2018).
Biological brains are the most energy-efficient processor, so it is reasonable that we try to mimic
them. A general biological principle of learning is Hebbian Learning: when a presynaptic neu-
ron repeatedly stimulates a postsynaptic neuron, the strength in connectivity between the pre-
and postsynaptic neurons increases. This gives rise to Spike-Timing Dependent Plasticity (STDP)
learning, where the strength in connectivity increases when the presynaptic neuron spikes con-
sistently before the postsynaptic neuron and decrease otherwise.
However, although biologically plausible, this type of learning does not produce results that can
compete with classical ANN learning, using, for instance, backpropagation.
There is a wave to provide new learning algorithms for SNN that can be as efficient as ANN
and still biologically plausible, e.g., eProp (Bellec et al., 2020) SpikeProp (Bohte et al., 2000)
Deltarule (Mohemmed et al., 2013), ReSuMe (Ponulak and Kasiński, 2010), and others (Dellafer-
rera et al., 2022; Dellaferrera and Kreiman, 2022).

Benchmarks

The classical AI community has developed extraordinarily in part due to the joint effort of com-
paring new techniques and algorithms. There are well-defined tasks with a proper response or
result called benchmarks. The most common benchmarks available contain extensive labeled
datasets.
As a novel computing platform, neuromorphic systems fail to perform and compare with classical
AI: the tasks and benchmarks are just unsuitable.
Inspired by biology, neuromorphic systems thrive in resolving real-world problems, notably with
low power consumption and latency. We need a new set of benchmarks that also would consider
the analog nature of acquiring data from the sensors, how they are stored, and how they are made
available to the systems.

Chapter 6. Discussions 75

We also need a different set of metric evaluations. Accuracy is not the primary performance
metric for biological systems, but to solve quickly or to interact with the environment to complete
a task.

Simulators

Although simulators are not directly linked with the neuromorphic computing stack, they have
a crucial role in helping to explore and design a neuromorphic system.
Hardware simulation is already a standard tool for neuromorphic engineering. Mostly to explore
real-world scenarios of data acquisition (or sensors) or the neuromorphic hardware itself, which
leads to new algorithms and approaches.
Although simulators do not perfectly replicate analog neuromorphic hardware and sensors (it is
extremely difficult to take into consideration different sources of noise or data quantization errors,
for instance), they provide an easier way to use them without the need to configure or calibrate
them, or when the sensors and hardware are not physically available.

6.2. Specific considerations and outlook

Here we will list some additional considerations that are still important for a complete under-
standing of the scalability of neuromorphic systems. First, we need to point out some simplifica-
tions we considered during the development of this work, and then we will briefly describe some
possible extensions that can be done moving forward.

6.2.1. Other network types

While small-world networks are our inspiration, we know that the neuromorphic community
uses many other network types. Networks that do not follow our imposed structure or deviate
too much from it can still be placed but without guarantee of optimally.
While not working on those types, we understand that offering an infrastructure to other connec-
tivity and network architectures is crucial.
In this work, we want to offer inspiration about how to deal with other types of networks. With
the available technology, designing general-purpose hardware that can fit the most diverse range
of architecture and with a large number of neurons and synapses is not yet reasonable. This work
can be extended to deal with other types of connectivities and to help the design of additional
hardware.
The network types we envision as the next ones to be used are DNN-types, e.g., Multilayer Per-
ceptron (MLP), CNN, Feed-forward Neural Network (FNN). Those networks are trained using
standard gradient descent methods, and their learning process does not take into consideration
essential characteristics of natural environments1. However, they show significant success in
diverse ML tasks, with fast speed and intense computing capacity. Moreover, they can be trans-
formed into SNN that also achieve great accuracy in that tasks (Rueckauer et al., 2017; Sengupta
et al., 2019; Stanojevic et al., 2022).

6.2.2. Neuron types

In this work, we abstracted the concept of neuron types. During the development of SNN, some
neuron models are commonly used: Hodgkin & Huxley (H&H), Integrate-and-Fire (I&F), Leak
Integrate-and-Fire (LI&F), Izhikevich, and others. We are aware that different neuron models can
lead to different dynamics. However, for our goal, i.e., placement and routing, a neuron’s method
to process its event is not a determining factor.

1Learning in biological systems does not require a massive set of labeled data, and it is not a separated process of the
regular operation of the system

76 6.2. Specific considerations and outlook

6.2.3. Synapse types

In this work, we also abstracted the synaptic type, i.e., the connection type between two neurons.
Most commonly, there are two types of synapses: excitatory and inhibitory. An excitatory con-
nection is where the input spike from a pre-neuron increases the post-synaptic neuron potential.
And analogously, an inhibitory connection decreases the post-synaptic neuron potential. Some
neuromorphic architectures offer more than just two types of synaptic behavior. For instance, in
DYNAP-SE, the excitatory and inhibitory synapses can be subdivided into two further types: fast
or slow.
Synaptic types are commonly used during SNN development. This information should also be
considered for optimal placement onto neuromorphic hardware and even for designing new rout-
ing architectures. The type of synapses allowed for each neuron (and their availability) can
strongly impact a hardware’s ability to support a desired network.

6.2.4. Weights

The amount of change that will be applied to the post-synaptic neuron is given by the synapse
strength, i.e., the weight of the connection.
In a formal ANN, the weight is a scalar value predetermined through an offline training process
and remains constant during the inference phase. However, SNNs take a more bio-plausible
approach. In SNNs, the synapses experience the phenomenon of plasticity, where the synapse
strength is adjustable and found to depend on the relative timing between pre- and post-synaptic
spikes of a neuron. This work does not consider the online learning process in our placement and
routing structure. Another limitation of our work is our assumption that all synapses arriving at
a neuron will have the same connection strength.

6.2.5. Optimality

The optimality of placement and routing for networks into neuromorphic processors is supposed
to guarantee that placement and routing can realize the desired network within the given con-
straints. We should consider all possibilities of placement and routing to guarantee the best pos-
sible design. Naively, we could consider generating and evaluating all possible designs or, more
specifically, for a given set of networks and hardware constraints to define all possible place-
ments and routings. Then, we could discard the ones that do not fulfill the constraints and pick
the one that fits the best, in our case, with the smallest area or memory requirements. Moreover,
by following this approach, we could guarantee that the placement and routing for a given set
of networks and hardware constraints would either find a solution (satisfying the conditions) or
prove the non-existence of a solution (since we would have considered all possibilities). However,
an explicit consideration of all possible solutions is infeasible: the absolute number of possibili-
ties would be too massive.
Instead, we use heuristics to find a feasible solution. A feasible solution is a solution that satisfies
the constraints. An optimal solution is a feasible solution that results in an optimal value (in our
case, minimum memory consumption).
Our approach to designing a new placement algorithm and routing architecture is based on the
idea that a connection’s cost should consider the distance between the connected neurons, i.e., by
using more or fewer bits to define connections depending on how often they are created. This
is the same idea behind data compression used, for instance, in jpeg (Wallace, 1992) or morse
code (Burns, 2004). These approaches are examples of Shannon’s source coding theorem, in which
statistical knowledge about the source information can reduce the required capacity of a channel,
or, in other words, redundant data can be eliminated from the transmitted information reducing
the usage of resources (Shannon, 2001).
A clear direction for future research is to analyze the optimality of our placement and routing.
Given that we know the statistics on connectivity (for the network’s topology we are focusing on),
it is a direct conclusion to compare the number of bits we use with the number of bits Shannon’s
source coding theorem would give as the best possible solution. Although we can’t guarantee to

Chapter 6. Discussions 77

find an optimal solution with our heuristic approach, we could determine how far we are from
an optimal solution, if it exists.

6.2.6. Clustering techniques

We use a known algorithm to find our neuron clusters, as explained in Chapter 4. During this
Thesis’s development, other approaches to cluster neurons were also considered, for instance,
cluster neurons by the strength of their connections or even by using k-means, where we could
form clusters given the distance between nodes. It would be interesting to analyze how different
cluster techniques affect our placement and routing.
Given that our selected architecture is highly structured, another approach we should consider
evaluating is based on random walks in the network. The idea of a random walk is that naturally,
long paths would be formed inside clusters, and short paths would be given by changing from
one cluster to another. This formulation, known as the Map Equation (Edler et al., 2020), is based
on information theory and Shannon’s source coding theorem.

6.2.7. Hardware parameters

The development of the placement algorithm allows us to play with different hardware parame-
ters: core size, router levels, number of cores per router, etc. Only some of the parameter configu-
rations used in software can lead to a viable implementation of physical hardware. For instance,
we saw in the placement of the RNN how increasing the number of neurons per core can reduce
the number of flagged connections. However, it does create a waste of neurons that are not being
used.
Our digital computers’ hardware progress happened because of sustained efforts to meet com-
putation demands as software systems became increasingly integrated into our lives. It is crucial
that the process of designing the hardware take into consideration inputs provided by the soft-
ware framework. Software implementation does not need to follow hard constraints imposed
by the hardware. For instance, they can consider an unlimited number of cores per router level
or an increasing number of neurons per core. While the physical hardware implementation can
not account for such freedom, it can, for instance, learn from the software what parameters have
the highest variability and find conditions to move toward them. We can provide neuromorphic
processors that accommodate the networks the community needs by using the software system
demands to guide new hardware implementation.

78 6.2. Specific considerations and outlook

"You can’t use an old map to explore a new
world."

Albert Einstein

7. Conclusion

The development of AI has seen significant progress in recent years, especially with the increas-
ing use of edge computing. However, it pushes for more efficient and specialized hardware to
accelerate the performance of edge-computing tasks. Developing domain-specific neuromorphic
hardware is one way to advance AI for edge-computing tasks even further. Neuromorphic hard-
ware is inspired by the structure and function of the brain and aims to process information in
a more energy-efficient and parallel way than traditional computing. One of the challenges in
building large-scale neuromorphic computing systems is optimizing memory resource allocation.
In this context, a hardware-software co-design approach can be used to address this challenge.
In this Thesis, we presented a co-design approach where brain-like small-world networks inspire
the routing scheme and placement algorithm.
Our co-design approach focuses on small-world network topology without limiting its possible
applications. Furthermore, focusing on a specific architecture can reduce the necessary memory
to place and route networks on a chip. As a result, we can scale up chips with analog design and
provide a placement algorithm to find optimal solutions for networks that follow our canonical
structure. In this Thesis, we showed that deviations from the canonical design can be placed
without diverging too much from the optimal solution. Moreover, the simultaneous design of
a placing and routing scheme allows for designing a new multi-core SNN chip that can handle
more extensive networks with minimum memory consumption and a smaller area.
In addition to providing a guide to new hardware design, in this Thesis, we also defined the
system software, compilers, and a description of a full computational stack for a neuromorphic
framework. This work can advance the use of neuromorphic hardware as an emerging computing
platform by providing a new computing stack that can be used as a starting point for further
development. The next step for the neuromorphic community is a concrete creation of common
layers of abstractions in this computing stack. This definition will allow the development of
better ways to analyze neuromorphic circuits’ performance and compare different hardware on
real-world case applications. Even more, these performance analyses can contribute to better-
informed decisions about the design of new devices created. Closing the loop in the software-
hardware co-design approach is essential to improve our algorithms, software, and hardware in
parallel. We can only fully exploit our hardware designs when providing software and algorithms
that can make the most out of them.

81

82

The best of the best and the worst of the worst
Well, you can never know
The places that I go
I still like you the most
You’ll always be my favorite ghost

Florence + The Machine, Big god

A. Survey on Networks and Applications

The Neuromorphic Cognitive Systems (NCS) group studies and develops computational models
and analog/digital circuits. We surveyed the applications in our group to find patterns and motifs
in ANNs. Our goal is to identify characteristics that would help us to develop new neuromorphic
hardware that can overcome some of the limitations of the current hardware used in the NCS
group. This survey focuses on understanding the networks and applications used in the NCS
group. It was created using a google form, and it can be found online1.

The survey covered applications’ type, networks’ type, number of neurons, number of incoming
and outgoing connections per neuron, etc.

We found that half of our group uses WTA and RNN. WTA are networks that select the maximum
from a collection of inputs (Feldman and Ballard, 1982). They are constructed using lateral in-
hibition among the neurons so that the system is a competitive neural network and can sustain a
state. RNN are networks that have a self-sustained temporal activation. This makes RNN dynam-
ical systems. In both types of networks, neurons are connected in clusters and show connections
among clusters, as seen in Figure A.1.

Figure A.2 shows the distribution of the network type used in the NCS group.

Besides WTA and RNN, oscillator networks and relational networks also follow a pattern of
densely connected clusters with sparse connectivity among clusters.

We also gathered from the survey the type of applications the networks were being used for and
what ratio between incoming and outgoing connections per neuron was necessary. The distribu-
tion of incoming vs. outgoing connections can be seen in Figure A.3.

1https://bit.ly/3dt3wCE

Figure A.1.: Schematics of RNN (left) and WTA (right). In both types of networks, we can identify
densely connected groups of neurons and sparse connections between them.

85

86

Figure A.2.: Network types identified in the application’s survey. WTA and RNN comprise half
of the types used (25% each), followed by DNN (around 17%) and CNN, MLP, Rela-
tional and Oscillator networks (8.3% each).

Figure A.3.: Distribution between the ratio of incoming and outgoing connections for all the ap-
plications analyzed. For most applications (≈ 75%), having the same number of in-
coming and outgoing connections is necessary.

The networks in the NCS group can achieve various applications. Table A.1 list the applications
collected in the survey and their network types.
WTA and RNN have similar characteristics, and they match the pattern found in biological neural
networks, as explained in Section 1.4.3. These network topologies allow a wide range of applica-
tions to be modeled; thus, we decided to fix the network’s topology to match a WTA structure.

Appendix A. Survey on Networks and Applications 87

Table A.1.: List of applications, the type of networks, and their relation between the number of
incoming and outgoing connections per neuron.

Network type and applications
Application Network Type Ratio of incoming vs out-

going connections
Pacemaker Oscillator/RNN equivalent incoming/out-

going
SLAM WTA few incoming, high out-

going
Event-based stereovision WTA high incoming, low out-

going
Audio and bio-signals
processing

RNN equivalent incoming/out-
going

Emergent behavior/clas-
sification

RNN equivalent incoming/out-
going

Multi-layer Spatio-
temporal pattern recog-
nition

DNN equivalent incoming/out-
going

Motor control, robotics Relational and WTA equivalent incoming/out-
going

B. System Software - CortexControl

Introduction

As explained in Chapter 1, neuromorphic hardware provides a platform for efficient real-time
simulation of neuronal dynamics and synaptic transmission. However, the configuration and
tuning of the neuromorphic chips are still a difficult task.
To alleviate this problem, developing a software toolchain that allows using these chips without
knowing all the hardware details is crucial.
DYNAP (Moradi et al., 2018) is a neuromorphic chip developed by SynSense, a spin-off of the
INI at the University of Zurich and the ETH Zurich. This chip has been used in the NCS group
to develop new computational models. However, it didn’t have a software toolchain, and the
calibration of parameters on the hardware was non-trivial.
We developed a framework to facilitate the use of the chip, using a modular design approach,
envisioning that it could be used and adapted for other neuromorphic chips.

Hardware parameters

The DYNAP-SE processor contains four chips. Each chip is composed of four interconnected
cores with 256 neurons. Thus, a DYNAP-SE board contains 4096 neurons.
The neurons are connected through synapses. In the DYNAP-SE, each neuron can be connected
to 64 other neurons using four connection types: slow excitatory, fast excitatory, slow inhibitory,
and fast inhibitory.
When a neuron spikes, an event is generated and transmitted through digital routers to the
synapse circuit. The event contains information about the source (the neuron that produced
it) and the target address (the neuron that will receive it). The synapse filters the event, and a
proportional current is supplied or absorbed from the connected neuron based on the synapse
type.
The connections between neurons are made through the use of a colocalized memory in the neu-
ron, and these are the CAMs and SRAMs. Each neuron contains 64 CAMs and 4 SRAMs cells
on DYNAP-SE. All synapse connections have the same weight. Different connection strengths
between neurons can be achieved by setting the same connection multiple times.

Software

CTXCTL is a system software aiming at facilitating the control and execution of experiments
using neuromorphic hardware platforms that communicate through AER.
Using the GUI of CTXCTL is possible to read and configure the hardware parameters and the
neurons’ activities. Figure B.1 shows the GUI. The top left part (top half of the black background)
shows the raster plot of all neurons (spikes of every neuron over time). Every neuron in the chip
is represented as a single row. The bottom left part (bottom half of the black background) shows
the instantaneous spiking activity per neuron. For the instantaneous activities, the neurons are
ordered as they are physically on the board: 256 neurons per core and four cores. Each core in a
chip is represented by a different color. The right side of the image shows the tabs to configure
the parameters of each core in each chip (C0C0 represents the core 0 from chip 0). For every tab,
interface controls such as text fields and sliders can easily configure the different parameters in
the hardware. The bottom part of the image shows CTXCTL Python console that allows the users

89

90

Figure B.1.: GUI of CTXCTL. Through the interface, the SNN developer can read the status of
each neuron in the hardware and configure the hardware parameters.

Figure B.2.: CTXCTL allows abstracting the hardware by wrapping the libCAER, making the
hardware parameters transparent to the user. Through a Python Application Pro-
gramming Interface (API), SNN developers can easily create their models and apply
them to the hardware device that will communicate with the lower-level drivers and
firmware. The green blocks were developed as a concurrent project to this Thesis.
One implementation of the red block is described in this Thesis, in Chapter 4.

to interact with the chip using python scripts. The Python console is also available in a ‘headless‘
mode, where the GUI is not instantiated.
CTXCTL is developed in C++ and aims to provide three different levels of functionalities. At the
basic (lowest) level, all the libCAER1 functions are available. At this level, to execute a network
on hardware, the SNN developer needs to write every piece of information to the hardware, i.e.,
the neurons’ addresses, the definition of a spike’s routing scheme, etc. To reduce the effort in exe-
cuting experiments on hardware, CTXCTL provides an intermediate level where utility functions
can be used for neuron instantiation and creating connections between neurons. At this level, the
user doesn’t need to know the full address of the neuron in the hardware but still needs to choose
in what chip and core they will be allocated and connect them using higher-level functions that
hide the routing scheme. The third and upper level of CTXCTL allows the description of SNN
in terms of neuron population and connectivities without the need to define chips and cores to
place the neurons. The block diagram of CTXCTL is shown in Figure B.2.
Figure B.3 shows a demo of CTXCTL live: by configuring a SNN on hardware and stimulating

1https://gitlab.com/inivation/libcaer

Appendix B. System Software - CortexControl 91

Figure B.3.: CTXCTL being used to configure a SNN, including parameters, input connections,
and multi-layer connectivity schemes, implemented using a Jupiter Notebook for
Python. The Jupyter Notebook can be used together with CTXCTL as a server option
is made available. The oscilloscope on the left shows analog and digital measure-
ments from the neurons on the chip that can be configured using the same setup.

the correct silicon neurons in the chip a "smiley face" is shown on the 2D-surface of the chip. The
SNN was configurated so that the input layer projected topographically to a second layer, and
then they activate corresponding neurons in the chip. Besides providing a Python Console inside
the GUI, CTXCTL API could be used externally, as in this case, through a Jupyter Notebook, by
activating a server inside the interface.
CTXCTL is fully made available (Cor, 2020). In-depth documentation of CTXCTL can be found
online 2.
Currently, CTXCTL is called Samna, and it is still under development 3.

2https://bit.ly/3dnRfzf
3https://www.synsense-neuromorphic.com/products/samna/

C. Xinyue Yao’s MSc thesis

Is imposing the distance constraint to ANNs reasonable? This was the driving question for the
Master project of Xinyue Yao, where Stan Kerstjens and I collaborated to guide the discussions,
and Giacomo Indiveri was the formal supervisor. In this project, we analyzed the impact of con-
straining connections during learning a task in ANN. The distance constraint was implemented
as a penalty term in the loss function, so the weight (thus, the connection) between far away
neurons would get more substantial penalties during training. With this distance constraint, we
could generate networks with major weight distribution towards short-range distances that could
still perform their tasks. Then, we analyzed the topology of these distance-constrained sparse net-
works and found a right-skewed distribution of connections over distance, in which connections
decrease almost exponentially from the short-range to the long-range. The distance-modulated
connectivity found in this work may be extended as guidance in neuromorphic hardware designs
to determine the long-range and short-range connections required in the network and the allo-
cation of memory resources in the chips. Specifically, our findings can reduce the number of
long-range connections needed for the network, which may decrease the number of memory cells
required per neuron to store both source addresses and tag information. This work has the po-
tential to offer a generic model-based memory optimization method in neuromorphic hardware
designs.

93

Implementing a Brain-inspired Distance
Constraint into Artificial Neural Networks

Master’s Thesis

Xinyue Yao

Institute of Neuroinformatics
University of Zurich

ETH Zurich

Supervisors:
Vanessa Leite

Prof. Dr. Giacomo Indiveri

94

Abstract

Implementing large-scale neural networks into neuromorphic hardware
devices requires significant memory to store the dense connectivity in-
formation. To improve the resource-efficiency in neuromorphic sys-
tems, several hardware-based solutions to memory reduction have been
proposed, which include clustering individual neuron tags into ad-
dress spaces (DYNAP-SE) or reducing the number of memory cells re-
quired via operating with all-to-all connectivity (MorphIC). However,
a neural-network-model-based solution to memory reduction is still
missing. Neural networks in mammalian brains are thought to follow
a small-world topology, where short-distance connections are favored
while long-range ones can still occur. Inspired by the small-worldness,
we propose a brain-inspired distance-constrained model that incorpo-
rates the distance constraint in ANN models’ connectivity. We imple-
ment the distance constraint as a penalty term in the loss function
such that weights with longer internodal distances get more substan-
tial penalties during training. Our findings show that the distance
constraint pushes the major weight distribution towards shorter-range
distances, indicating a distance-dependent modulation on network con-
nectivity. Further, we look into the topology of distance-constrained
sparse networks and observe a right-skewed distribution of connec-
tions over distance, in which connections decrease almost exponentially
from the short-range to the long-range. The distance-modulated con-
nectivity found in this work may be extended as guidance in neuro-
morphic hardware designs to determine the amount of long-range and
short-range connections required in the network and the allocation of
memory resources in the chips. Specifically, our findings can reduce
the number of long-range connections needed for the network, which
may decrease the number of memory cells required per neuron to store
both source addresses and tag information. This work has the poten-
tial to offer a generic model-based memory optimization method in
neuromorphic hardware designs.

i

Appendix C. Xinyue Yao’s MSc thesis 95

Acknowledgements

I would like to express my deepest appreciation to Vanessa and Stan
for their incredible support throughout the project. I am particularly
grateful for their help when I became overwhelmed and got lost. Our
weekly brainstorming sessions have built up every brick of this project,
and I highly valued their generous advice on how to approach prob-
lems we encounter on the road, and their timely feedback on questions
that troubled me. I cannot accomplish this project without these two’s
help. I would like to extend my deepest gratitude to Prof. Giacomo
Indiveri, who offered the opportunity to make this project happen and
brought Vanessa, Stan and I together. I’m also thankful for Giacomo’s
insightful suggestions and constructive advice on the general direction
of the project. His encouragement always helps me to regain confi-
dence when I have doubts in the work.

I am also extremely grateful to Renate Krause for her precious inputs
on finding a task to test the RNN model and inspirational discussions
and advice. I owe Chenxi Wu many thanks for his valuable suggestions
on the neuromorphic hardware implementation part and extensive dis-
cussions on future implications of the current work. Special thanks to
Dr. Charlotte Frenkel for her expertise in MorphIC and invaluable in-
sights on neuromorphic routing schemes. And I must thank Dr. Florian
Meier, who has inspired me of the initial idea of the project.

Finally, I would like to my families who have always been by my
side throughout the ups and downs. I’d like to show my gratitude
to my dearest friends, Hussein, Chen and Sihan, who have been there
to offer me mental support, specially to Hussein for his proofreading
and technical support. I thank Keethana, Joan, Adrian, Hanna, and
Guillem, with whom we created a wonderful atmosphere at home dur-
ing the stressful pandemic situation. Last but not least, I cannot express
enough how thankful I am to Nil, for everything.

ii

96

Contents

Contents iii

1 Introduction 1
1.1 Small world theory: connectivity and geometric distance . . . 1
1.2 Memory reduction in neuromorphic hardware 2
1.3 Bringing the biological solution into ANN models 3

2 Methods 5
2.1 Definition of the distance constraint 5

2.1.1 Represent spatial distance in a neural network 6
2.1.2 Implementing the distance constraint 6

2.2 Network architecture and datasets 7
2.2.1 Distance-constrained FCNN on MNIST dataset 7
2.2.2 Distance-constrained RNN on a 3-bit memory task . . 8

2.3 A dynamic binary-search pruning algorithm 8
2.4 Metrics for evaluating constrained models 9

2.4.1 Representing weight distribution against distances . . 9
2.4.2 Network sparsity and internodal distances 10
2.4.3 Models’ performance evaluation 11

3 Results 13
3.1 Distance-constrained FCNN models 13
3.2 Distance constrained RNN models on a 3-bit memory task . . 15

3.2.1 Evaluating the performance of constrained models . . 15
3.2.2 Distance constraint weakly modify the weight distribu-

tions . 16
3.3 Constrained sparse RNN models 19

3.3.1 1-norm constrained models are more sparse than 2-norm 19
3.3.2 Distance-dependent connectivity distributions 19

iii

Appendix C. Xinyue Yao’s MSc thesis 97

Contents

4 Discussion 25
4.1 Small-worldness in distance-constrained models 25
4.2 Potential implications in neuromorphic engineering 26

4.2.1 A guidance for maximum memory requirement 26
4.2.2 Directions for future work 27

4.3 Related work . 27

5 Conclusion 29

Bibliography 31

A Appendix 35
A.1 FCNN supplement figures . 35
A.2 3-bit memory task supplement figures 36

iv

98

Chapter 1

Introduction

Motivation

Memory constraint represents one of the main problems in the design of
computing systems, particularly in neuromorphic hardware designs, which
aim to build brain-inspired processing systems. The human brain consists of
around 100 billion neurons, and each neuron can have 1000 to 10’000 connec-
tions [Akopyan et al., 2015]. The biological brain is characterized by dense
local connections, which may be a product of natural selection to minimize
resource-usage and optimize the efficiency of signal transmission. Thus, un-
derstanding how connectivity works in the brain is crucial for finding an
efficient solution to memory allocation and optimization in neuromorphic
hardware implementations.

1.1 Small world theory: connectivity and geometric dis-
tance

The human brain weighs 2% of the body-weight but consumes approxi-
mately 20% of the resting metabolic energy [Holliday et al., 1967]. With
such a high energy demand, natural evolution drives the biological neu-
ral system towards minimal energy consumption while maintaining all es-
sential functions. Biophysical properties, such as the size and the number
of neurons existing in the brain, achieve a trade-off between the minimal
metabolic energy required and the complexity necessary for generating new
behaviors for survival purposes [Laughlin and Sejnowski, 2003, Hasenstaub
et al., 2010, Sengupta et al., 2013, Remme et al., 2018, Gollo et al., 2018]. The
wiring strategy in the biological nervous system is another crucial factor
for achieving efficiency because neural information processing is the most
energy-expensive cortical activity and the biological nervous system prefers
the shortest possible wiring strategy to minimize the energy used during

1

Appendix C. Xinyue Yao’s MSc thesis 99

1. Introduction

signal transmission [Laughlin, 2001, Harris and Attwell, 2012, Harris et al.,
2012]. Empirical studies have shown that the positioning of neurons and
synapses follows a wiring principle, which produces sufficient complexity
in the network at a minimum energy expenditure [Bullmore and Sporns,
2012, Wang and Clandinin, 2016, Gollo et al., 2018].

This efficient wiring strategy is hypothesized to follow a small-world topol-
ogy: most connections in the brain are assembled into local circuits while
long-distance connections can still occur although the global connections
prefer the shortest wiring diagram [Bullmore and Sporns, 2012, Sporns and
Zwi, 2004, Watts and Strogatz, 1998, Gastner and Ódor, 2016, Cherniak, 1994,
Watts and Strogatz, 1998]. The small world hypothesis has gained significant
attention as a graph theory approach to understand the biological neural
system [Bassett and Bullmore, 2006, 2017, Bullmore and Sporns, 2012]. The
small-worldness has been observed in cross-species empirical studies [Watts
and Strogatz, 1998, Sporns and Zwi, 2004, Alexander-Bloch et al., 2013]. The
small-world topology in the brain allows optimal information processing: it
can form locally clustered connections and global integration where a few
long-range connections will be employed so the brain can achieve an effi-
cient information transmission at a low wiring cost [Bassett and Bullmore,
2006, 2017]. This theory highlights the neural connectivity’s dependence on
geometric distance. Perinelli et al. [2019] demonstrate that the distance con-
straint may serve as an intrinsic governing factor for the wiring architecture.
Thus, investigating the role of geometric distance in the sense of hardware
implementation may be a potential approach to study the connectivity in
neuromorphic devices and ultimately provide a solution to reducing the
memory requirement.

1.2 Memory reduction in neuromorphic hardware

Inspired by the small-world characteristics—dense local clusters and long-
range information transmission, DYNAP-SE [Moradi et al., 2017] adopts a
mixed routing strategy where neurons are divided into clusters and follow
a two-phase tag-based hierarchical routing scheme. The first stage of the
routing scheme uses a point-to-point strategy to route neurons to a subset
of intermediate neurons. The intermediate neurons broadcast the tag within
the local cluster. The tags are stored in content addressable memory, repre-
senting the target neurons used in phase 2, such that the set-up spares the
memory required for saving the tag information. DYNAP-SE manages to
reduce memory requirement due to the densely clustered structure and a
hierarchical routing scheme. However, DYNAP-SE can only reduce mem-
ory usage for storing address tag IDs, but still requires significant memory
resources to store full connectivity information [Moradi et al., 2017, Frenkel
et al., 2019].

2

100

1.3. Bringing the biological solution into ANN models

Another neuromorphic processor following small-world brain topology is
MorphIC [Frenkel et al., 2019]. MorphIC employs different types of routers
at each level, and the combinations of mixed routing schemes produce high
efficiency. In MorphIC, neurons from the same core communicate via a cross-
bar operation. At the inter-core and intra-chip level, neurons also follow a
crossbar approach. The only change from communication at this level is
that the connectivity requires 3 bits per neuron to specify the mapping onto
the other three cores. The inter-chip communication uses a point-to-point
routing scheme, and this level is the most memory-expensive part, for it
requires enough memory to store information for inter-core and inter-chip
connectivity. The crossbar operation in MorphIC largely reduces memory
requirement. However, this all-to-all connectivity also results in a drawback
that free resources cannot be reallocated, leading to inefficiency when imple-
menting a sparse neural network.

Although the existing approaches inspired by small-world brain topology
[Moradi et al., 2017, Frenkel et al., 2019] have shown impressive results in
memory reduction, none has, nevertheless, explored the dependence of con-
nectivity on geometric distance. Moreover, existing approaches to mem-
ory reduction are mostly hardware-based [Young et al., 2019], and a di-
rectly drawn solution from biological neural network models that are im-
plemented into the hardware device is still missing.

1.3 Bringing the biological solution into ANN models

Our current work fills in the two missing dots mentioned above: a solu-
tion that reflects the distance-dependent connectivity in the small-world
network topology and is directly drawn from neural network models. In-
spired by biological nervous systems, we propose a generic implementation
of distance constraint in artificial neural network (ANN) models, follow-
ing the small-world network theory. We implemented the distance con-
straint in a fully-connected neural network (FCNN) for MNIST Handwrit-
ten Digit Classification [LeCun and Cortes, 2010] and in a recurrent neural
network (RNN) for a 3-bit memory task [Sussillo and Barak, 2013]. The
distance constraint is used during training to regularize the model’s loss
such that weights associated with longer distances get more substantial
penalties. We compare our distance-constrained models with models us-
ing Lp regularization, which only penalizes weights based on the magni-
tude of the weight, to demonstrate the impacts of the distance constraint.
Both Lp-regularized and distance-constrained models are evaluated based
on the model’s performance and weight distribution with, and compared
with a baseline model using no constraint. Our results show that although
both types of constrained models achieve comparable performances on the
MNIST and the 3-bit memory tasks, the distance constraint pushes the

3

Appendix C. Xinyue Yao’s MSc thesis 101

1. Introduction

network’s weights towards short-distance ranges, whereas Lp regulariza-
tion does not show a distance-dependent preference. We then apply a dy-
namic pruning method to sparsify constrained models till the model can
no longer achieve a bottom-line accuracy. For sparse models, we compare
the maximum sparsity achieved under both constraints and the distribution
of remaining connections over distances. We found that both types of con-
strained models reach a similar level of sparsity. However, connections drop
exponentially from short-range to long-range distances distance-constrained
models, while Lp-regularized models show no preference over ranges of
distances. Our work suggests distance-dependent connectivity in distance-
constrained ANN models, which indicate a potential network-based strategy
to position neurons in a neural network. We extend the discussion of the cur-
rent work to potential implications in neuromorphic hardware for reducing
memory resources in their routers and network design.

4

102

Chapter 2

Methods

In this chapter, we introduce and detail the proposed distance constraint and
its implementation. Then, we describe how we train an FCNN model for
MNIST classification task [LeCun and Cortes, 2010] and an RNN model for
a 3-bit memory task [Sussillo and Barak, 2013]. Next, we present a dynamic
binary-search pruning method to obtain the sparsest topological structure
of models. Finally, we discuss the metrics we used for evaluating two types
of constrained models, including the model’s connectivity and sparsity, as
well as the performance.

The experiments on this thesis were carried out in simulated layouts, which
do not require any actual hardware implementation. The neural networks
defined in this work were built using the PyTorch library [Paszke et al., 2019].
The source code for the distance constraint definition, how to run described
experiments, and the script to produce figures shown in the thesis can be
found here:
https://code.ini.uzh.ch/xyao/energy_constrained_model/tree/master.
The experiments from this thesis were run on a machine with graphics accel-
eration1. The complete list of the packages needed and information about
how to run the code can be found in the repository.

2.1 Definition of the distance constraint

The concept of distance used in this thesis stands for the geometric distance
between different units in the neural network (herein also referred to as ax-
onal distance or connection distance). The distance constraint is defined as
a distance-modulated penalty, which gives more penalties to weights asso-
ciated with long distances and is added as a regularization term to the loss
function during training.

1PyTorch version: 1.6.0, Cuda version: 10.1

5

Appendix C. Xinyue Yao’s MSc thesis 103

2. Methods

Figure 2.1: A visual representation of the network connectivity in 3-d space.

2.1.1 Represent spatial distance in a neural network

To represent the distance information, we generate a 3D synthetic point
cloud from a uniform distribution and assign the coordinates of each point
to a neuron in the network to represent the location of the neuron. Figure 2.1
illustrates the visual representation of the distance-constrained network, in
which most connections are local while long-distance connections can occur.

We compute the p-norm distance between any neuronal pair and store the
distance information in a distance matrix. The distance matrix is normal-
ized such that the average distance between any two nodes is 1. We map
the distances to the corresponding weights by applying any required shape
transformation of the matrix (Figure 2.2).

2.1.2 Implementing the distance constraint

We perform an element-wise multiplication for the distance and weight ma-
trices and take the Lp-norm of the product. We then implement the matrix
product into the loss function an Lp regularization such that connections

6

104

2.2. Network architecture and datasets

Figure 2.2: We divide the distance matrix into partitions to match for the shape of their
corresponding partitions in the weight matrix. To perform an element-wise multiplication, the
distance matrix is transposed to match the shape of the distance matrix.

with a long-distance get a stronger penalty.

To control the strength of constraint implemented into the network, we in-
troduce a scaling hyper-parameter α. We tune the value of α to balance the
strength of the constraint and the performance of the model. The mathemat-
ical description for the implementation of the distance constraint is shown
as below:

L = Lacc(y, ŷ) + α ∑ ||wi · di||p, α ≤ 1 (2.1)

where wi and di denote the i-th entry in the weight matrix and the distance
matrix, respectively.

2.2 Network architecture and datasets

As a sanity check, we compare Lp-regularized models with distance-constrained
models to verify the impacts of distance information on networks’ behaviors.
A baseline model where α equals zero is shown for both constrained cases.

2.2.1 Distance-constrained FCNN on MNIST dataset

We test the proposed distance-constrained regularizer on the MNIST hand-
written digit dataset [LeCun and Cortes, 2010]. The training error is com-
puted via the negative log-likelihood loss function. Experiments are re-
peated ten times using ten different seeds to control the randomness. We
report the performance of the model as the inferring accuracy on the test

7

Appendix C. Xinyue Yao’s MSc thesis 105

2. Methods

split of the dataset. We use a two-layer FCNN for this task; it has 784 input
units, two hidden layers with 500 neurons in each, and ten outputs. The
network weights are initialized using Kaiming Uniform initializer [He et al.,
2015].

2.2.2 Distance-constrained RNN on a 3-bit memory task

We use a 3-bit memory task [Sussillo and Barak, 2013] to evaluate distance-
constrained RNN models. As described in Sussillo and Barak [2013], the
goal is to train an RNN model to solve tasks by creating fixed points and
using the fixed point dynamics to solve the memory task. During train-
ing, the RNN model receives three independent sequences of binary inputs,
consisting of -1, 0, and +1, which set each channel’s state (or ”bit”). The
model is trained to recall the last non-zero input to the channel and to ig-
nore inputs from the other two channels (see Figure 3.4 and Figure A.3 for a
visual representation of the task). The trained model will create eight fixed
points representing network activation states where the network is stable
and no longer moves around. The model can solve tasks relying on the
fixed point dynamics to transition from one state to another. Thus, identify-
ing the trained model’s fixed points is an important metric to confirm if the
constrained model can perform adequately.

To observe the fixed points, we use principal component analysis (PCA)
on the hidden states of the network, as suggested in [Golub and Sussillo,
2018]. The well-trained RNN model should display cubic-like PCA trajecto-
ries, where eight fixed points can be identified (see Figure A.2). Apart from
the dynamics of the trained network, we evaluate the network’s performance
by computing the mean squared error (MSE) between the model’s estimates
and true targets. We repeated the training with 20 manual seeds (n=20) and
reported the accuracy as the median of MSE obtained from 20 experiments
for each α value. The RNN architecture we used here is adapted from Golub
and Sussillo [2018]. In the RNN, there are three input units and three output
units corresponding to the three memory bits and one hidden layer with 64
hidden neurons. The network weights and biases are initialized uniformly.

2.3 A dynamic binary-search pruning algorithm

We develop a pruning method based on the binary-search algorithm to find
the sparsest topology the model can achieve while all models satisfy some
minimum accuracy requirement (Θa). This method is used in both FCNN
and RNN models when analyzing the sparsity of the network topology.

To ensure all sparse network models can maintain a comparable level of
performance, we determine an accuracy threshold (Θa) based on the per-
formance of the dense models of the same kind, i.e., either FCNN or RNN.

8

106

2.4. Metrics for evaluating constrained models

This accuracy threshold is used to adjust the weight threshold for pruning.
When initializing the model, we compute the variance (sw) of the initial
weights and define the weight threshold (Θw) as sw divided by a scalar δ.
During training, the value of δ is adjusted concerning the pruned model’s
performance, whereas the variance of the initial weights stays the same once
initialized.

At every training iteration, all weights smaller than the threshold Θw are re-
moved from the network, and the model’s performance is evaluated against
an accuracy threshold Θa for every 20 epochs. If the model performs bet-
ter than the threshold, we store the checkpoint of the current model and
continue training with a larger threshold Θw such that more weights can
be removed; otherwise, we restart the model from the last checkpoint and
reduce the threshold Θw to continue training. The weight threshold Θw is
adjusted based on the model’s performance. We apply a binary-search algo-
rithm to determine the value of Θw, and we stop the searching if one half
of the search interval is smaller than the arbitrary stopping criterion (δs).
algorithm 1 demonstrates the dynamic binary-search pruning algorithm for-
mally.

2.4 Metrics for evaluating constrained models

2.4.1 Representing weight distribution against distances

We plot the weight distribution against the internodal distance using a Hexbin
plot. In each plot, we fix the range of the x-axis (internodal distance) and
show the log scale distributions of weights at each distance range. In sparse
networks, we remove zero-weights and their associated distances such that
the weight distribution only represents connections in the network.

Komogrov-Smirnov test for statistical signifcance In addition to the Hexbin
plots, we statistically demonstrate the difference in weight distributions
of the two types of constrained models with a two-sample Kolmogorov-
Smirnov (KS) test [Massey Jr, 1951] and report the results using a cumula-
tive density function (CDF). We report D-statistics and p-value to determine
significant differences between the weight distributions from two types of
constrained models.

For the RNN models, we do a statistical analysis on the shape of the weight
distributions around the median of the distance. Therefore, we separate
the weights of those distances into two groups: weights that are under the
median (i.e., left tail) and those over the median (i.e., right tail). We perform
KS-test on both groups and report the result as a CDF.

9

Appendix C. Xinyue Yao’s MSc thesis 107

2. Methods

Algorithm 1: A dynamic binary-search pruning algorithm.
Result: A model with the sparsest connectivity it can achieve while

meeting the performance criterion (Θa)
initialization;
weight threshold is Θw = sw/δ;
δ̂ denotes the last saved δ value (or 2δ if there is no saved
checkpoint);

while δ > δs do
for i in max(epoch) do

training session;
remove weights smaller than Θw;
if model accuracy is smaller than Θa then

if loss has not converged then
continue

else
set a new scalar δ = (δ+δ̂)

2 and a new threshold
Θw = sw/δ;

load the last checkpoint and continue the training
session with the new threshold;

end
else

save the model;

set a new scalar δ = (δ̂−δ)
2 and a new threshold

Θw = sw/δ;
continue the training session with the new threshold;

end
end

end

2.4.2 Network sparsity and internodal distances

Network edge density in constrained models We compute the edge density
as a ratio of the number of non-zero weights to the total number of weights
in the network. We report the result as the median edge density as well as
the standard deviation from n experiments for each α value tested.

Connectivity distributions over distances To analyze the sparse topology
of the network, we represent the connection distribution over distances in
histogram plots. The network connection is determined by counting the
number of non-zero weights within each distance range. We removed the
weights associated with only self-loops when computing the network con-
nection. Thus, the distribution of network connectivity represents only

10

108

2.4. Metrics for evaluating constrained models

”meaningful” connections at each range of distance.

2.4.3 Models’ performance evaluation

Apart from the evaluating method in Chapter 2.2.1 and Chapter 2.2.2, we
also perform a KS test on the accuracy to evaluate if the performance of
p-norm distance constrained models and Lp regularized models are signif-
icantly different. A p-value and D-statistics are reported to determine the
significance.

11

Appendix C. Xinyue Yao’s MSc thesis 109

Chapter 3

Results

This chapter describes the key findings of the current work. First, as a
proof-of-concept, we demonstrate results from a distance-constrained FCNN
model on MNIST dataset [LeCun and Cortes, 2010]. We show that the
distance-constrained regularization compresses the network’s weights into
a shorter distance range than L2 regularization. We then present the same
analysis on an RNN model using a 3-bit memory task [Sussillo and Barak,
2013] and observe similar weight vs. distance distribution. In the last section,
we discuss network behaviors after pruning and report that the distance con-
straint pushes the network weights towards a right-skewed distribution.

3.1 Distance-constrained FCNN models

For the sake of simplicity, we started with a shallow-layered FCNN model
on MNIST [LeCun and Cortes, 2010] as described in Chapter 2.2.1. The im-
plementation details of the distance constraint can be found in Chapter 2.1.2.

The distance constraint compresses weights into shorter distance range

We trained both types of constrained models for different constraint levels,
including the cases where there is no constraint. We show the weight dis-
tribution over internodal distance at the early stage (the first epoch) and
the end of the training for different constraint levels, which is represented
by the value of α for both constrained models (Figure 3.1). We observe
that in baseline models (top panels in Figure 3.1.a and b), weights are ran-
domly distributed over internodal distance. The weight distribution in the
L2 regularized model has a higher amount of smaller weights than the dis-
tribution seen in the baseline model (Figure 3.1.a). However, the weight
distribution pattern over distances in L2 constrained models is similar to
the baseline model—weights are randomly distributed over distances. In
distance-constrained models, we observe that the distance constraint not

13

110

3. Results

Figure 3.1: An example of weight distribution over internodal distances (log scale) for α ∈
{0.0, 0.01, 0.09}, where α = 0.0 indicates the baseline model and α = 0.01 and α = 0.09 represent
the weakest and the strongest constraint respectively.

only pushes most weights into small values but compresses the weight dis-
tribution into a shorter internodal distance range, which can be seen after
only one epoch of training. The compressing effect of the distance constraint
on the weight distribution is increasing with the strength of the constraint,
i.e., with increasing α values.

Comparable performance in two types of constrained models

We evaluate the constrained models’ accuracy to check whether the different
weight distributions lead to changes in the model’s performance. Figure 3.2
shows that test accuracies of both types of constrained models are decreas-
ing with increasing strength of constraint, i.e., increasing α values. L2 regu-
larized models weakly outperform the distance-constrained models for rel-
atively weaker constraints, i.e., for α ∈ {0.01, 0.02, 0.03}, 0.001 < p < 0.05
and D > 0.6. When posing stronger constraining effects, i.e. larger α val-
ues (α > 0.04) the distance-constrained models achieve better performance
than L2; the distance-constrained models strongly outperform L2 models for
α ∈ {0.07, 0.08, 0.09} (p < 0.001, d > 0.6). Models using 1-norm distance
constraint and L1 regularization cannot obtain convergence in loss, for the
constraint strength is too big. Thus, results from the 1-norm constrained
models are not shown.

14

Appendix C. Xinyue Yao’s MSc thesis 111

3.2. Distance constrained RNN models on a 3-bit memory task

Figure 3.2: Inference accuracy (in percentage) of L2- and 2-norm distance-constrained models
on the test split of the MNIST dataset from 10 experiments (n=10). The diamond-shaped
marker in each violin-shaped distribution stands for the median of the model’s accuracy. The
shape of the violin represents the distribution of the accuracy of each experiment. The accuracy
of baseline models is marked by the horizontal dash line.

3.2 Distance constrained RNN models on a 3-bit mem-
ory task

Although the implementation of brain-inspired distance constraint in FCNN
models on MNIST task provides a start for us to proceed, the FCNN oper-
ates in a fundamentally different way from the biological neural network.
The MNIST dataset [LeCun and Cortes, 2010] is quite different from cogni-
tive tasks that happen in the biological brain. Since what we are interested
in is whether the distance constraint in an ANN model can display similar
behaviors as observed in a small-world brain network, the RNN model is
more attractive as it shares fundamental similarities to the biological brain.
We chose a 3-bit memory task [Sussillo and Barak, 2013] as our dataset be-
cause this task simulates how memories are represented in the biological
brain (see Chapter 2.2.2 for detailed task description).

3.2.1 Evaluating the performance of constrained models

In the 3-bit memory task [Sussillo and Barak, 2013, Sussillo, 2014, Golub
and Sussillo, 2018, Maheswaranathan et al., 2019], one crucial feature is the
fixed point dynamics of the trained model. The eight fixed points mark the
network activation states at which the model no longer moves around, and

15

112

3. Results

the dark edges displayed as trajectories represent the transition probability
from one fixed point to another. We use the dynamics of the fixed points
as well as the mean squared error of the model’s estimation to evaluate the
performance of each model.

Dynamics analysis We perform a principal component analysis (PCA) on
the activation states of the trained model and present the dynamics of the
trained network in Figure A.2 (see Chapter A.2). As shown in Figure A.2,
the PCA trajectories of all models, p-norm distance-constrained or Lp regu-
larized, roughly follow a cubic-like trace. At each corner of the cube, we
identify a fixed point which marks the stable network activation states (8 in
total). This result is consistent with Sussillo and Barak [2013], Sussillo [2014],
Golub and Sussillo [2018], Maheswaranathan et al. [2019]. Thus, adding con-
straints to the RNN model does not affect the network dynamics, and there
is no difference observed between models using L2 regularization and the
distant constraint. We ran the same experiments with L1-norm for both con-
strained models, and we again observe no difference among models (see
Figure A.2).

Inference performance We report the model’s performance in the form of
MSE (displayed in percentage). As shown in Figure 3.3.a, models regular-
ized by a 2-norm constraint have shown a similar performance as the base-
line model (α = 0.0), although the accuracy distribution gets more sparse
with stronger constraint (when α ≥ 0.004). However, in 1-norm constrained
models, there’s a more noticeable decrease in the performance with stronger
constraint. When comparing the MSE of 2-norm constrained models with
those using 1-norm, the former has an overall better performance than the
latter (Figure 3.3). In Figure 3.4, we represent the models’ performance in
a visualized way as a cross-check. In 2-norm constrained models, the pre-
dicted outputs of the input (Figure 3.4 ’blue’) overlays well with the true out-
puts (Figure 3.4 ’yellow’). However, in 1-norm constrained cases, more ’blue’
lines can be seen, indicating a higher error rate, which is consistent with the
MSE plot shown earlier (Figure 3.3). Although there is a deviation from the
2-norm constrained to the 1-norm constrained models’ performance, we can
nevertheless see a correct model evaluation trend in the MSE plots. Thus,
the MSE can be a good indicator for evaluating the model’s performance.

3.2.2 Distance constraint weakly modify the weight distributions

We plot the weight distribution over distances for the RNN constrained
model (see Chapter A.2 Figure A.4). We show that when using stronger
constraints (α = 0.05, 0.07), weights in the distance-constrained models are
mostly distributed in the shorter range of distances (distance between 0 to

16

Appendix C. Xinyue Yao’s MSc thesis 113

3.2. Distance constrained RNN models on a 3-bit memory task

(a)

(b)

Figure 3.3: Mean squared error plots across n=20 experiments. In each violin-shaped plot, the
median of the MSE at each α value is marked by a diamond-shaped marker. (a) L2 regularized
models vs. 2-norm distance-constrained models. (b) L1 regularized models vs. 1-norm distance-
constrained models. The baseline models are denoted as models at α = 0.0, and the strength of
the constraint increases with α.

1) compared with a random distribution of weights in Lp-regularized mod-

17

114

3. Results

Figure 3.4: Example trial to visualize the performance of constrained models on the 3-bit
memory task. The performances with the computed MSE of models using L2-regularization,
2-norm distance-constraint, L1-regularization, and 1-norm distance constraint are displayed from
the left-most column to the right-most column respectively. In each plot, red lines indicate binary
input sequences consisting of -1, 0, and +1, yellow lines represent target outcomes of the model
which are either -1 or +1 and the blue lines stand for estimated outputs of the model which
should ideally follow the same pattern as in yellow lines. From the top panels to the bottom
ones, the strength of the constraints increases from none (α = 0.0) to the strongest (α = 0.008).

18

Appendix C. Xinyue Yao’s MSc thesis 115

3.3. Constrained sparse RNN models

els. However, in models using relatively small α values, the trend cannot be
observed easily. Thus, we did a statistical analysis to compare the weight
distribution in both types of constrained models. We divided the distri-
bution of the weights into two groups—one associated with a shorter dis-
tance and the other longer (separated by the median of the distance)—and
evaluated any significant difference in the distributions. In Figure A.5 (see
Chapter A.2), we show that across all degrees of constraining effect, Lp-
regularized models show no significant changes in the weight distribution
associated with longer or shorter distances. However, weight distributions
in distance-constrained models present a strong preference (with p < 0.001)
over a shorter distance range (Figure A.5, denoted by ’blue’ lines). Thus,
distance-constrained RNN models still have some impacts on the weight
distribution, albeit rather weak when compared with the compressing effect
observed in the FCNN models (Figure 3.1). This may occur because we ap-
plied a 10-times weaker scaling parameter (α) in the RNN models than in
the FCNN models.

3.3 Constrained sparse RNN models

Next, we investigate how the distance constraint affects the sparse connec-
tivity in ANN models. We set a baseline performance for each p-norm con-
strained model using the MSE reported in Figure 3.3 as a reference. For
each pruning experiment, we remove as many weights as possible from the
RNN models using a binary-search based pruning method (Chapter 2.3) un-
til the model can no longer reach the baseline performance. Since all saved
models have met the baseline performance criterion, we are not showing the
accuracy metric in this section, as it is irrelevant.

3.3.1 1-norm constrained models are more sparse than 2-norm

We quantify the constrained RNN models’ sparsity as the edge density,
which is defined as the ratio of the counts of non-zero weights to all weights.
In Figure 3.5, we show that for constrained models using the same p-norm
for computation, both types of models (i.e. Lp-regularized or distance-constrained)
show a similar level of connection density. However, when comparing 2-
norm constrained models (Figure 3.5.a) with 1-norm constrained ones (Fig-
ure 3.5.b), we can see that the edge density of 1-norm constrained models is
almost half of the density of 2-norm constrained models.

3.3.2 Distance-dependent connectivity distributions

Similar to the previous analysis, we examine the impacts of distance con-
straint in the sparse RNN models. Since the distance constraint is involved

19

116

3. Results

(a)

(b)

Figure 3.5: Average network edge density (n=20). (a) L2 regularized models vs. 2-norm distance
constrained models. (b) L1 regularized models vs. 1-norm distance constrained models. The edge
density of a network model is computed as the ratio of the total counts of non-zero weights over
the total counts of weight in the network.

in modulating the weights from the network, we plot the connection distri-
bution over distance to verify if the network connectivity shows a distance-
dependent pattern.

A distance-dependent right skewed connection distribution

In Figure 3.6, we present the connections distribution over internodal dis-
tances obtained from the 2-norm (Figure 3.6.a) and the 1-norm (Figure 3.6.b)
constrained models for 4 levels of constraints (α ∈ {0.0, 0.001, 0.005, 0.008}).

20

Appendix C. Xinyue Yao’s MSc thesis 117

3.3. Constrained sparse RNN models

Lp-regularized models (’blue’ distribution in Figure 3.6) show a similar dis-
tribution of connections as non-constrained models (top row in Figure 3.6).
The median of the distance stays about the same across all four different
degrees. In distance-constrained models, however, the connections follow
a right-skewed distribution and the median of the distance decreases with
increasing strength of constraint (’orange’ distribution in Figure 3.6). When
comparing different p-norm constrained models, 1-norm distance constraint
produces a stronger right-skewed connection distribution over distances.

Distance constraint triggers hierarchical connectivity

To show the preference of network connectivity over long- and short-distances,
we divided the total range of distance (d=2.5) into five uniform sections and
categorized the connections into five ranges of distance—D1 (0.0–0.5), D2
(0.5–1.0), D3 (1.0–1.5), D4 (1.5–2.0) and D5 (2.0–2.5). We define D1–D2 to be
short-range, D3 mid-range, and D4–D5 long-range. Figure 3.7 illustrates that
in the distance-constrained models (’orange’ distribution), the network mod-
els show a general preference over short-range connections than long-range,
and the connectivity becomes more sparse at longer-range distances. In
1-norm distance-constrained models (Figure 3.7.b), the decrease of connec-
tions over distance is exponential. The exponential curve cannot be fitted
into the 2-norm distance-constrained models due to the relatively smaller
connection distribution at D1 than at D2, despite that the connections drop
exponentially from D2 to D3 (especially with larger α values). We perform
the same type of pruning and connectivity analysis on the FCNN models for
completeness, and we show that in 1-norm constrained FCNN models, the
same distance-triggered hierarchical connectivity can be observed as well
(see Chapter A.2, Figure A.1).

21

118

3. Results

Figure 3.6: Counts of network connections distributed over internodal distance, represented as
the median from n=20 experiments. (a) L2 regularized models vs. 2-norm distance constrained
models. (b) L1 regularized models vs. 1-norm distance constrained models. Each bin in the plot
represents the counts of connections lying within the corresponding distance range. From top
row to the bottom, each row has a corresponding value of α equals to 0.0, 0.001, 0.005, and
0.008.

22

Appendix C. Xinyue Yao’s MSc thesis 119

3.3. Constrained sparse RNN models

Figure 3.7: Network connections distributed over 5 uniform ranges of distances (n=20). (a) L2

regularized models vs. 2-norm distance constrained models. (b) L1 regularized models vs. 1-norm
distance constrained models. The value of α from top row to the bottom are 0.0, 0.001, 0.005,
and 0.008 respectively

23

120

Chapter 4

Discussion

4.1 Small-worldness in distance-constrained models

In this work, we introduce a brain-inspired distance constraint to regular-
ize the ANN models during training. We found that distance-constrained
models, regardless of the type of the models, have shown distributions
of weights with a preference for short distances. This distance-dependent
constraining effect is more prominent in sparsely-connected networks, in
which we find a right-skewed connectivity distribution over distances. This
preference for short-range (local) connections in network topology is con-
sistent with the small-world brain network. Moreover, we show that we
achieve this distance-modulated connectivity without compromising on the
network’s performance, more than a Lp regularization will do (Figure 3.2
and Figure 3.3). Thus, whenever a small-world topology is needed for an
ANN model, one can replace the Lp-regularization with a p-norm distance-
constraint.

This model-free distance-constraining effect can be a candidate for a neural-
network-model-based strategy to reduce memory requirement in neuromor-
phic hardware. As shown in Figure 3.7 and Figure A.1, the number of
connections located at a shorter range of distances (D1–D2) is exponentially
larger than the amount lying in the longer-distance range (D4–D5) in the
distance-constrained models. The connectivity distribution seen here indi-
cates a hierarchical preference for distance ranges, i.e., a preference for es-
tablishing connections based on the length of internodal distances. Since the
distance information is embedded in the trained model, we can use the out-
put topology of the trained model to decide the positioning of neurons such
that long-range connections can be minimized. The implication is feasible
because, in our model, long-range connections are penalized more, in which
only important long-distance ones (neurons that are assigned with a larger
value of weight) remain. When translating this observation into neuromor-

25

Appendix C. Xinyue Yao’s MSc thesis 121

4. Discussion

phic hardware design, we can use the connectivity and distance informa-
tion obtained from the network to decide the allocation of memory to store
long-range connectivity in the chip design. Thus, our proposed distance-
constraint regularization may be a candidate for a generic model-based so-
lution to memory reduction and optimization in neuromorphic hardware
designs.

However, in the current work, we implement the distance constraint as the
Euclidean distance among neuronal pairs, which cannot be directly applied
to hardware design. One necessary conversion is to translate the distance
constraint to match the concept of distances in neuromorphic hardware de-
sign. The possible implications of our work are discussed in detail in the
following section.

4.2 Potential implications in neuromorphic engineering

In Chapter 1.2, we reviewed how small-world inspired routing schemes,
such as DYANP-SE and MorphIC, manage to reduce the memory require-
ment when building neuromorphic devices. However, these routing schemes
either require memory storage of full connectivity information among all
neurons [Moradi et al., 2017] or require all-to-all connectivity [Frenkel et al.,
2019]. Our proposed distance-constrained model may provide an intermedi-
ate solution.

4.2.1 A guidance for maximum memory requirement

The distance-dependent distribution of connections suggests a network topol-
ogy, with which the shortest wiring length can be obtained. Results shown
in Figure 3.7 and Figure A.1 demonstrate that most connections are within
shorter-range of distances (local connections), while long-range connections
are sparse. This distance-dependent connectivity information can be used
as guidance to position neurons in a neuromorphic chip such that the al-
location of memory resources is optimal. More specifically, the distance-
dependent connectivity found in this work demonstrates the maximum dis-
tance of connections needed in the network, and the maximum number of
connections within a short-range of distance (local). Based on the connec-
tivity distribution, we can determine what is the furthest location (Dmax,
encoded as an address) one neuron in the chip needs to reach and assign
log2(Dmax) bits of memory to encode this information. Suppose we have a
distance-constrained network with N neurons, and we know from distance-
dependent connectivity that a neuron in a local circuit can form up to C
connections with the longest connection lying at distance Dmax. We can then
group C neurons into a local cluster, which means each neuron requires
log2(N/C) bits to store tag information [Moradi et al., 2017] and log2(Dmax)

26

122

4.3. Related work

bits to specify the longest-range of connectivity needed. Thus, the maximum
memory (M) required by each neuron in the network is:

M = log2(Dmax) + log2(N/C) (4.1)

The memory requirement M in the distance-constrained model is smaller
than log2(N) because the network is sparse and does not require full con-
nectivity (Dmax ≤ N). Thus, we may reduce the memory required for sav-
ing neurons’ tag information (from N to N

C) and for specifying the address
(Dmax ≤ N).

4.2.2 Directions for future work

Since the distance constraint in this work is based on the Euclidean distance
among neurons, we need to convert the distance information into addresses
that encodes location information of a spike. However, since this work is
based on ANN models and has not tested any spiking neural network, the
potential implementation mentioned above is yet to be examined under a
more neuromorphic-friendly setup. We propose some potential directions
to evaluate the distance-constrained models.

After training with a distance-constraint (see Chapter 2.1.2 for implementa-
tion detail), a distance-dependent connectivity topology of the network can
be obtained. The distance and connectivity information obtained after train-
ing the neural network model can be used to guide the allocation of memory
requirements for each neuron in the network in designing neuromorphic de-
vices.

Multiple comparisons can be done to evaluate the efficiency in distance-
constrained guided mapping and memory:

1. A distance-constrained model mapped into a neuromorphic chip using
the exact location information provided by the network topology.

2. Mapping a distance-constrained model into a chip with shuffled lo-
cation coordinates, i.e., only distance-modulated connectivity is repre-
sented in the model but not the associated distance information.

3. Train a model regularized by a constraint that does not represent dis-
tance information and map to the location information provided by
the distance-constrained model.

4.3 Related work

Blake et al. [2018] propose a distance-weight regularization pruning method to
minimize the wiring length in the network while maintaining the accuracy
of performances. They demonstrate their results using a fully-connected

27

Appendix C. Xinyue Yao’s MSc thesis 123

4. Discussion

neural network on the MNIST dataset and show that the distance-weight
regularized model tends to have the best performance among comparisons.
Blake et al. [2018]’s approach and our current work share some similarity in
how the distance-constraint is defined and how this distance-weight regular-
ization can shorten the wiring length in the neural network model, which
support the implementation of distance information as a regularization term
in ANN models. Blake et al. [2018]’s and the current work, nevertheless, fo-
cus on fundamentally different implementation objectives. Blake et al. [2018]
aim to shorten the cable length in hardware design using their proposed
method, but the concept of wiring length in a neural network model is not
applicable in hardware design. However, our goal is to find a small-world
topology in the neural network model, which can guide the amount of long-
or short-range connections needed in designing a neuromorphic device. The
concept of distance in our work is more of a hierarchical distance used in de-
signing the routing scheme rather than a precise location. Thus, despite the
similarities mentioned, the ultimate objectives of the two are quite different.

28

124

Chapter 5

Conclusion

We presented an implementation of a brain-inspired distance constraint in
FCNN and RNN models as a novel approach to trigger distance-dependent
connectivity in the ANN models, which follows the small-world theory. We
demonstrated that in all distance-constrained models, both the FCNN and
the RNN, the distance constraint can, at least to some degree, lead to a
weight distribution preferring short distances with minimal loss in perfor-
mance. In sparse neural networks, the distance constraint can produce a
right-skewed distribution of connections. Our observations are consistent
with the small world brain topology and reveal the feasibility of represent-
ing distance information in ANN models and shorten the wiring length
of connections. This discovery of distance-dependent connectivity in ANN
models sheds light on developing a model-based solution to modulate the
length of connectivity and reduce memory requirement in neuromorphic
hardware design.

Our method still requires more modification and verification in different con-
texts (e.g., spiking neural network, different cognitive-related tasks, and the
definition of distances in neuromorphic hardware design. We discuss the
potential implications of this neural-network-based strategy to guide the al-
locations of memory resources in neuromorphic hardware design, which
may introduce generic model-based guidance to optimize the memory us-
age in neuromorphic devices. However, more insights are needed for the
application of the current work. Our work provides a new piece of evidence
of how understanding the biological neural system and integrating the bio-
logical observations into artificial networks may improve the neuromorphic
hardware design.

29

Appendix C. Xinyue Yao’s MSc thesis 125

Bibliography

[1] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, et al. Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neu-
rosynaptic chip. IEEE transactions on computer-aided design of integrated
circuits and systems, 34(10):1537–1557, 2015.

[2] A. F. Alexander-Bloch, P. E. Vértes, R. Stidd, F. Lalonde, L. Clasen,
J. Rapoport, J. Giedd, E. T. Bullmore, and N. Gogtay. The anatomi-
cal distance of functional connections predicts brain network topology
in health and schizophrenia. Cerebral cortex, 23(1):127–138, 2013.

[3] D. S. Bassett and E. Bullmore. Small-world brain networks. The neuro-
scientist, 12(6):512–523, 2006.

[4] D. S. Bassett and E. T. Bullmore. Small-world brain networks revisited.
The Neuroscientist, 23(5):499–516, 2017.

[5] C. Blake, L. Wang, G. Castiglione, C. Srinivasa, and M. Brubaker. On
learning wire-length efficient neural networks. 2018.

[6] E. Bullmore and O. Sporns. The economy of brain network organiza-
tion. Nature Reviews Neuroscience, 13(5):336–349, 2012.

[7] C. Cherniak. Component placement optimization in the brain. Journal
of Neuroscience, 14(4):2418–2427, 1994.

[8] C. Frenkel, J.-D. Legat, and D. Bol. Morphic: A 65-nm 738k-
synapse/mm 2̂ quad-core binary-weight digital neuromorphic proces-
sor with stochastic spike-driven online learning. IEEE Transactions on
Biomedical Circuits and Systems, 13(5):999–1010, 2019.

[9] M. T. Gastner and G. Ódor. The topology of large open connectome
networks for the human brain. Scientific reports, 6:27249, 2016.

31

126

Bibliography

[10] L. L. Gollo, J. A. Roberts, V. L. Cropley, M. A. Di Biase, C. Pantelis,
A. Zalesky, and M. Breakspear. Fragility and volatility of structural
hubs in the human connectome. Nature neuroscience, 21(8):1107–1116,
2018.

[11] M. D. Golub and D. Sussillo. Fixedpointfinder: A tensorflow tool-
box for identifying and characterizing fixed points in recurrent neu-
ral networks. Journal of Open Source Software, 3(31):1003, 2018. doi:
10.21105/joss.01003.

[12] J. J. Harris and D. Attwell. The energetics of CNS white matter. J.
Neurosci., 2012. ISSN 02706474. doi: 10.1523/JNEUROSCI.3430-11.2012.

[13] J. J. Harris, R. Jolivet, and D. Attwell. Synaptic Energy Use and Supply,
2012. ISSN 08966273.

[14] A. Hasenstaub, S. Otte, E. Callaway, and T. J. Sejnowski. Metabolic cost
as a unifying principle governing neuronal biophysics. Proc. Natl. Acad.
Sci. U. S. A., 2010. ISSN 00278424. doi: 10.1073/pnas.0914886107.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification, 2015.

[16] M. A. Holliday, D. Potter, A. Jarrah, and S. Bearg. The relation of
metabolic rate to body weight and organ size. Pediatr. Res., 1967. ISSN
15300447. doi: 10.1203/00006450-196705000-00005.

[17] S. B. Laughlin. Energy as a constraint on the coding and processing of
sensory information, 2001. ISSN 09594388.

[18] S. B. Laughlin and T. J. Sejnowski. Communication in neuronal net-
works, 2003. ISSN 00368075.

[19] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

[20] N. Maheswaranathan, A. Williams, M. Golub, S. Ganguli, and D. Sus-
sillo. Universality and individuality in neural dynamics across large
populations of recurrent networks. In Advances in neural information
processing systems, pages 15629–15641, 2019.

[21] F. J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal
of the American statistical Association, 46(253):68–78, 1951.

[22] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri. A scalable multi-
core architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (dynaps). IEEE transactions on
biomedical circuits and systems, 12(1):106–122, 2017.

32

Appendix C. Xinyue Yao’s MSc thesis 127

Bibliography

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in
neural information processing systems, pages 8026–8037, 2019.

[24] A. Perinelli, D. Tabarelli, C. Miniussi, and L. Ricci. Dependence of
connectivity on geometric distance in brain networks. Scientific reports,
9(1):1–9, 2019.

[25] M. W. Remme, J. Rinzel, and S. Schreiber. Function and energy con-
sumption constrain neuronal biophysics in a canonical computation:
Coincidence detection. PLoS Comput. Biol., 2018. ISSN 15537358. doi:
10.1371/journal.pcbi.1006612.

[26] B. Sengupta, A. A. Faisal, S. B. Laughlin, and J. E. Niven. The effect
of cell size and channel density on neuronal information encoding and
energy efficiency. J. Cereb. Blood Flow Metab., 2013. ISSN 0271678X. doi:
10.1038/jcbfm.2013.103.

[27] O. Sporns and J. D. Zwi. The small world of the cerebral cortex. Neu-
roinformatics, 2(2):145–162, 2004.

[28] D. Sussillo. Neural circuits as computational dynamical systems. Cur-
rent opinion in neurobiology, 25:156–163, 2014.

[29] D. Sussillo and O. Barak. Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural com-
putation, 25(3):626–649, 2013.

[30] I. Wang and T. Clandinin. The influence of wiring economy on nervous
system evolution. Current Biology, 26(20):R1101 – R1108, 2016. ISSN
0960-9822. doi: https://doi.org/10.1016/j.cub.2016.08.053.

[31] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[32] A. R. Young, M. E. Dean, J. S. Plank, and G. S. Rose. A review of
spiking neuromorphic hardware communication systems. IEEE Access,
7:135606–135620, 2019.

33

128

Appendix A

Appendix

A.1 FCNN supplement figures

Figure A.1: Connection distribution vs. ranges of distances in sparse FCNN models using 1-norm
constraints. (a) A histogram of the medians of connections lying in each distance interval (n=10)
with α = 5e− 5. (b)–(d) Hierarchical connection distributions over five ranges of distances, with
D1–D2 being the shorter ranges of distance (0.0–1.0), D3 the mid-range (1.0–1.5), and D4–D5
the longer-ranger (1.5–2.5).

35

Appendix C. Xinyue Yao’s MSc thesis 129

A. Appendix

A.2 3-bit memory task supplement figures

Figure A.2: PCA trajectories of the RNN activation states forLp-regularized models and distance-
constrained models. Row (a)-(c) show the dynamics for models with α = 0.0, 0.001, 0.005
respectively. The red dots locating in the corner of the cube mark the fixed points or 8 memory
states of the 3 -bit memory task.

36

130

A.2. 3-bit memory task supplement figures

Figure A.3: Example trials to visualize the 3-bit memory task on sparse constrained models.

37

Appendix C. Xinyue Yao’s MSc thesis 131

A. Appendix

Figure A.4: Weight distribution vs. internodal distances for the constrained RNN models.
Weights distribution is displayed in log scale for different α values.

Figure A.5: A cumulative density function demonstrating the statistical analysis on the shape
of the weight distribution of RNN models is shown. (a)–(d) represent the cdf computed from
models using L2 regularization, 2-norm distance constraint, L1 regularization and 1-norm distance
constraint. Weights are separated into two groups: the part associated with distances shorter
than the median of the distance (denoted by the blue curves), and those with distances longer
than the median (denoted by the red curves). In each plot, x-axis denotes the value of weights
and y-axis the probability of distribution.

38

132

Bibliography

(2016). NESTML: a modeling language for spiking neurons. Zenodo.

(2020). Cortexcontrol: A tool for controlling and executing experiments us-
ing neuromorphic hardware platforms that communicate through address-
event representation. https://gitlab.com/neuroinf/ctxctl_contrib/-/wikis/

ctxctl-executables-and-documentation. Unreleased software, Institute of Neuroin-
formatics, University of Zurich and ETH Zurich.

a Hardware Revolution, B. D. N. (2018). Big data needs a hardware revolution. Nature,
554(7691):145–146.

Abbate, J. (1999). Getting small: a short history of the personal computer. Proceedings of the IEEE,
87(9):1695–1698.

Agrawal, B. and Sherwood, T. (2006). Modeling tcam power for next generation network devices.
In 2006 IEEE International Symposium on Performance Analysis of Systems and Software, pages
120–129. IEEE.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam, N., Naka-
mura, Y., Datta, P., Nam, G.-J., Taba, B., Beakes, M., Brezzo, B., Kuang, J. B., Manohar, R., Risk,
W. P., Jackson, B., and Modha, D. S. (2015). TrueNorth: Design and tool flow of a 65 mW 1 mil-
lion neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 34(10):1537–1557.

Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Comput-
ers, EC-16(3):299–307.

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., Andreopoulos, A., Wong,
T. M., Flickner, M., Alvarez-Icaza, R., McQuinn, E., Shaw, B., Pass, N., and Modha, D. S. (2013).
Cognitive computing programming paradigm: A corelet language for composing networks of
neurosynaptic cores. In International Joint Conference on Neural Networks (IJCNN), pages 1–10.
IEEE.

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations, population coding and
computation. Nature reviews. Neuroscience, 7(5):358–366.

Backus, J. (1978). Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641.

Balaji, A. and Das, A. (2019). A framework for the analysis of throughput-constraints of snns on
neuromorphic hardware. In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 193–196. IEEE.

Balaji, A., Das, A., Wu, Y., Huynh, K., Dell’Anna, F. G., Indiveri, G., Krichmar, J. L., Dutt, N. D.,
Schaafsma, S., and Catthoor, F. (2020a). Mapping spiking neural networks to neuromorphic
hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1):76–86.

Balaji, A., Marty, T., Das, A., and Catthoor, F. (2020b). Run-time mapping of spiking neural
networks to neuromorphic hardware. Journal of Signal Processing Systems, 92(11):1293–1302.

Barabási, D. L. and Barabási, A.-L. (2020). A genetic model of the connectome. Neuron,
105(3):435–445.

133

https://gitlab.com/neuroinf/ctxctl_contrib/-/wikis/ctxctl-executables-and-documentation
https://gitlab.com/neuroinf/ctxctl_contrib/-/wikis/ctxctl-executables-and-documentation

134 Bibliography

Barabási, D. L. and Czégel, D. (2021). Constructing graphs from genetic encodings. Scientific
Reports, 11(1):1–13.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., Choo, X.,
Voelker, A., and Eliasmith, C. (2014). Nengo: a python tool for building large-scale functional
brain models. Frontiers in neuroinformatics, 7:48.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2020). A
solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communi-
cations, 11(3625):1–15.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J., Alvarez-
Icaza, R., Arthur, J., Merolla, P., and Boahen, K. (2014). Neurogrid: A mixed-analog-digital
multichip system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699–716.

Binzegger, T., Douglas, R. J., and Martin, K. A. (2005). Cortical architecture. In International
Symposium on Brain, Vision, and Artificial Intelligence, pages 15–28. Springer.

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). Spikeprop: backpropagation for networks of
spiking neurons. In ESANN, volume 48, pages 419–424. Bruges.

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello, E., and Beigne, E.
(2019). Spiking neural networks hardware implementations and challenges: A survey. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 15(2):1–35.

Boybat Kara, I. (2020). Multi-memristive synaptic architectures for training neural networks.
Technical report, EPFL.

BrainScales (2011–2015). Brain-inspired multiscale computation in neuromorphic hybrid sys-
tems (BrainScaleS). FP7 269921 EU Grant.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901.

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of struc-
tural and functional systems. Nature Reviews Neuroscience, 10(3):186–198.

Bullmore, E. and Sporns, O. (2012). The economy of brain network organization. Nature Reviews
Neuroscience, 13(5):336–349.

Burns, R. W. (2004). Communications: An International History of the Formative Years, volume 32.
IET.

Caporale, N. and Dan, Y. (2008). Spike timing dependent plasticity: A hebbian learning rule.
Annual Review of Neuroscience, 31(1):25–46.

Carlson, R. and Nemhauser, G. L. (1966). Scheduling to minimize interaction cost. Operations
Research, 14(1):52–58.

Cazals, F. and Karande, C. (2008). A note on the problem of reporting maximal cliques. Theoretical
computer science, 407(1-3):564–568.

Ceruzzi, P. E. (2003). A history of modern computing. MIT press.

Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C., and Krishnamurthy, R. K. (2019). A
4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and
sparse weights in 10-nm FinFET CMOS. IEEE Journal of Solid-State Circuits, 54(4):992–1002.

Bibliography 135

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., and de Freitas, N.
(2018). Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.

Chicca, E. and Indiveri, G. (2020). A recipe for creating ideal hybrid memristive-CMOS neuro-
morphic processing systems. Applied Physics Letters, 116(12):120501.

Chowdhury, S. N. and Shah, S. (2022). Hardware aware modeling of mixed-signal spiking neural
network. In 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), pages 104–108.

Clarke, D. D. and Sokoloff, L. (1999). Circulation and energy metabolism in the brain, chapter 31,
pages 637–669. Lippincot - Raven; Sixth Edition.

Covi, E., Donati, E., Liang, X., Kappel, D., Heidari, H., Payvand, M., and Wang, W. (2021). Adap-
tive extreme edge computing for wearable devices. Frontiers in Neuroscience, 15.

Daneshtalab, M., Ebrahimi, M., Liljeberg, P., Plosila, J., and Tenhunen, H. (2010). A low-latency
and memory-efficient on-chip network. In 2010 Fourth ACM/IEEE International Symposium on
Networks-on-Chip, pages 99–106. IEEE.

Darwish, T. and Bayoumi, M. (2005). Trends in low-power vlsi design. The Electrical Engineering
Handbook, pages 263–280.

Das, A., Wu, Y., Huynh, K., Dell’Anna, F., Catthoor, F., and Schaafsma, S. (2018). Mapping of local
and global synapses on spiking neuromorphic hardware. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1217–1222. IEEE.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P.,
Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A.,
Tse, J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang, Y., and Wang, H. (2018). Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):82–99.

Davison, A., Hines, M., and Muller, E. (2009). Trends in programming languages for neuroscience
simulations. Frontiers in Neuroscience, 3:36.

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L.,
and Yger, P. (2008). PyNN: a common interface for neuronal network simulators. Frontiers in
Neuroinformatics, 2(11).

Dayan, P. (1999). Unsupervised learning. The MIT Encyclopedia of the Cognitive Sciences.

Dayma, B., Patil, S., Cuenca, P., Saifullah, K., Abraham, T., Le Khac, P., Melas, L., and Ghosh, R.
(2021). DALL-E Mini.

De Michell, G. and Gupta, R. (1997). Hardware/software co-design. Proceedings of the IEEE,
85(3):349–365.

Dellaferrera, G. and Kreiman, G. (2022). Error-driven input modulation: solving the credit as-
signment problem without a backward pass. In International Conference on Machine Learning,
pages 4937–4955. PMLR.

Dellaferrera, G., Woźniak, S., Indiveri, G., Pantazi, A., and Eleftheriou, E. (2022). Introducing
principles of synaptic integration in the optimization of deep neural networks. Nature Commu-
nications, 13(1):1–14.

Donati, E., Payvand, M., Risi, N., Krause, R., Burelo, K., Dalgaty, T., Vianello, E., and Indiveri, G.
(2018). Processing EMG signals using reservoir computing on an event-based neuromorphic
system. In Biomedical Circuits and Systems Conference, (BioCAS), pages 1–4. IEEE.

Donati, E., Payvand, M., Risi, N., Krause, R., and Indiveri, G. (2019). Discrimination of EMG
signals using a neuromorphic implementation of a spiking neural network. Biomedical Circuits
and Systems, IEEE Transactions on, 13(5):795–803.

136 Bibliography

Douglas, R. J. and Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review of
Neuroscience, 27:419–451.

Douglas, R. J., Martin, K. A., and Whitteridge, D. (1989). A canonical microcircuit for neocortex.
Neural Computation, 1:480–488.

Economist, T. (2020). The cost of training machines is becoming a prob-
lem. https://www.economist.com/technology-quarterly/2020/06/11/

the-cost-of-training-machines-is-becoming-a-problem. Accessed: 2022-11-11.

Edler, D., Eriksson, A., and Rosvall, M. (2020). The mapequation software package.
mapequation.org. Accessed: 2022-12-27.

Ehrlich, B. (2022). The brain in search of itself: Santiago ramón y cajal and the story of the neuron.

Eppler, J.-M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008). Pynest: a conve-
nient interface to the NEST simulator. Fontiers in Neuroinformatics, 12(2).

Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., and Bengio, S. (2010). Why does un-
supervised pre-training help deep learning? The Journal of Machine Learning Research, 11:625–
660.

Fang, H., Shrestha, A., Zhao, Z., Wang, Y., and Qiu, Q. (2019). A general framework to map neural
networks onto neuromorphic processor. In 20th International Symposium on Quality Electronic
Design (ISQED), pages 20–25. IEEE.

Feldman, J. A. and Ballard, D. H. (1982). Connectionist models and their properties. Cognitive
science, 6(3):205–254.

Furber, S. and Bogdan, P., editors (2020). SpiNNaker: A Spiking Neural Network Architecture.
Boston-Delft: now publishers.

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker project. Proceedings of
the IEEE, 102(5):652–665.

Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L. A., and Furber, S. (2012). A hierachical
configuration system for a massively parallel neural hardware platform. In Proceedings of the
9th conference on Computing Frontiers, pages 183–192. ACM.

Gewaltig, M.-O. and Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2(4):1430.

Gilson, M., Savin, C., and Zenke, F. (2015). Editorial: Emergent neural computation from the
interaction of different forms of plasticity. Frontiers in Computational Neuroscience, 9.

Goodman, J. R. (1983). Using cache memory to reduce processor-memory traffic. In Proceedings
of the 10th annual international symposium on Computer architecture, pages 124–131.

Gopalakrishnan, R., Chua, Y., and Kumar, A. J. S. (2019). Hardware-friendly neural network
architecture for neuromorphic computing. arXiv preprint arXiv:1906.08853.

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label learning.
Science, 351(6277).

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., Bohn, P., Calde-
jon, S., Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and thalamic
connectivity. Nature, 575(7781):195–202.

Hawkins, J., Ahmad, S., and Cui, Y. (2017). A theory of how columns in the neocortex enable
learning the structure of the world. Frontiers in Neural Circuits, 11.

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
mapequation.org

Bibliography 137

He, Y. and Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current opinion in
neurology, 23(4):341–350.

Hertz, J. (2022). Why SoCs need NoCs: Network on chip and
the future of computing. https://www.allaboutcircuits.com/news/

why-socs-need-nocs-network-on-chip-and-future-computing/, Accessed: 2023-01-
17.

Horowitz, M. (2014). 1.1 computing’s energy problem (and what we can do about it). In 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 10–
14.

Horvát, S., Gămănu t, R., Ercsey-Ravasz, M., Magrou, L., Gămănu t, B., Van Essen, D. C., Burkhal-
ter, A., Knoblauch, K., Toroczkai, Z., and Kennedy, H. (2016). Spatial embedding and wiring
cost constrain the functional layout of the cortical network of rodents and primates. PLoS
biology, 14(7):e1002512.

Indiveri, G. and Sandamirskaya, Y. (2019). The importance of space and time for signal processing
in neuromorphic agents. IEEE Signal Processing Magazine, 36(6):16–28.

Ito, T., Hearne, L., Mill, R., Cocuzza, C., and Cole, M. W. (2020). Discovering the computational
relevance of brain network organization. Trends in cognitive sciences, 24(1):25–38.

Jamil, T. (1997). Ram versus cam. IEEE Potentials, 16(2):26–29.

Ji, Y., Zhang, Y., Chen, W., and Xie, Y. (2018). Bridging the gap between neural networks and
neuromorphic hardware with a neural network compiler. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 448–460. ACM.

Ji, Y., Zhang, Y., Li, S., Chi, P., Jiang, C., Qu, P., Xie, Y., and Chen, W. (2016). Neutrams: Neural
network transformation and co-design under neuromorphic hardware constraints. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture, page 21. IEEE Press.

Kaiser, M. (2011). A tutorial in connectome analysis: topological and spatial features of brain
networks. Neuroimage, 57(3):892–907.

Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., and Hamada, T. (2015). An open
approach to autonomous vehicles. IEEE Micro, 35(6):60–68.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. (2011). Gpus and the future
of parallel computing. IEEE Micro, 31(5):7–17.

Kerstjens, S. (2022). The Tree-D Brain: The Connectome’s Strategy for Developmental Self-
Construction. PhD thesis, ETH Zurich.

Koch, C. (2016). How the computer beat the go player. Sci Am Mind, 27:20–23.

Krause, R., van Bavel, J. J. A., Wu, C., Vos, M. A., Nogaret, A., and Indiveri, G. (2021). Robust
neuromorphic coupled oscillators for adaptive pacemakers. Scientific Reports, 11(1).

Kreiser, R., Renner, A., Leite, V. R. C., Serhan, B., Bartolozzi, C., Glover, A., and Sandamirskaya,
Y. (2020). An on-chip spiking neural network for estimation of the head pose of the icub robot.
Frontiers in Neuroscience, 14.

Labbe, M. (2021). Energy consumption of ai poses environmental prob-
lems. https://www.techtarget.com/searchenterpriseai/feature/

Energy-consumption-of-AI-poses-environmental-problems. Accessed: 2022-11-11.

Laughlin, S. B. and Sejnowski, T. J. (2003). Communication in neuronal networks. Science,
301(5641):1870–1874.

https://www.allaboutcircuits.com/news/why-socs-need-nocs-network-on-chip-and-future-computing/
https://www.allaboutcircuits.com/news/why-socs-need-nocs-network-on-chip-and-future-computing/
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems

138 Bibliography

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

Lemaréchal, C. (2012). Cauchy and the gradient method. Doc Math Extra, 251(254):10.

Li, X., Xu, F., Zhang, J., and Wang, S. (2013). A multilayer feed forward small-world neural
network controller and its application on electrohydraulic actuation system. Journal of Applied
Mathematics, 2013.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic feedback
weights support error backpropagation for deep learning. Nature Communications, 7:13276.

Lin, C.-K., Wild, A., Chinya, G. N., Lin, T.-H., Davies, M., and Wang, H. (2018). Mapping spiking
neural networks onto a manycore neuromorphic architecture. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation PLDI, pages 78–89.
ACM.

Liu, H. (2002). Routing table compaction in ternary cam. IEEE Micro, 22(1):58–64.

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R. (2014). Event-based neuromor-
phic systems. Wiley.

Lynn, C. W. and Bassett, D. S. (2019). The physics of brain network structure, function and
control. Nature Reviews Physics, 1(5):318–332.

Maass, W. and Markram, H. (2004). On the computational power of circuits of spiking neurons.
Journal of computer and system sciences, 69(4):593–616.

Mahowald, M. (1994). An Analog VLSI System for Stereoscopic Vision. Kluwer, Boston, MA.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
Bull. Math. Biophys., 5:115–133.

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–36.

Mead, C. (2020). How we created neuromorphic engineering. Nature Electronics, 3(7):434–435.

Mead, C. and Ismail, M. (1989). Analog VLSI implementation of neural systems, volume 80. Springer
Science & Business Media.

Medsker, L. R. and Jain, L. (2001). Recurrent neural networks. Design and Applications, 5:64–67.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., Jackson,
B. L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S. K., Appuswamy, R., Taba,
B., Amir, A., Flickner, M. D., Risk, W. P., Manohar, R., and Modha, D. S. (2014). A million
spiking-neuron integrated circuit with a scalable communication network and interface. Sci-
ence, 345(6197):668–673.

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and hierarchically modular
organization of brain networks. Frontiers in neuroscience, 4:200.

Milde, M., Renner, A., Krause, R., Whatley, A. M., Solinas, S., Zendrikov, D., Risi, N., Rasetto, M.,
Burelo, K., and Leite, V. R. C. (2018). teili: A toolbox for building and testing neural algorithms
and computational primitives using spiking neurons. https://teili.readthedocs.io/en/

latest/index.html. Unreleased software, Institute of Neuroinformatics, University of Zurich
and ETH Zurich.

Mill, R. D., Ito, T., and Cole, M. W. (2017). From connectome to cognition: The search for mecha-
nism in human functional brain networks. NeuroImage, 160:124–139.

Mohamed, W. (2008). The edwin smith surgical papyrus: Neuroscience in ancient egypt. IBRO
History of Neuroscience, 1.

https://teili.readthedocs.io/en/latest/index.html
https://teili.readthedocs.io/en/latest/index.html

Bibliography 139

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2013). Training spiking neural net-
works to associate spatio-temporal input–output spike patterns. Neurocomputing, 107:3–10.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous processors
(DYNAPs). IEEE Transactions on Biomedical Circuits and Systems, 12(1):106–122.

Morita, T., Asada, M., and Naito, E. (2016). Contribution of neuroimaging studies to understand-
ing development of human cognitive brain functions. Frontiers in human neuroscience, 10:464.

Mysore, N., Hota, G., Deiss, S. R., Pedroni, B. U., and Cauwenberghs, G. (2022). Hierarchical
network connectivity and partitioning for reconfigurable large-scale neuromorphic systems.
Frontiers in Neuroscience, 15.

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A. R., Eliasmith, C.,
Manohar, R., and Boahen, K. (2019). Braindrop: A mixed-signal neuromorphic architecture
with a dynamical systems-based programming model. Proceedings of the IEEE, 107(1):144–164.

Neustadter, E., Mathiak, K., and Turetsky, B. (2016). Eeg and meg probes of schizophrenia patho-
physiology. In The neurobiology of Schizophrenia, pages 213–236. Elsevier.

Nicola, W. and Clopath, C. (2017). Supervised learning in spiking neural networks with FORCE
training. Nature Communications, 8(1):1–15.

Noda, H., Inoue, K., Kuroiwa, M., Igaue, F., Yamamoto, K., Mattausch, H. J., Koide, T., Amo, A.,
Hachisuka, A., Soeda, S., et al. (2005). A cost-efficient high-performance dynamic tcam with
pipelined hierarchical searching and shift redundancy architecture. IEEE Journal of Solid-State
Circuits, 40(1):245–253.

Numenta (2022). Ai is harming our planet: addressing ai’s staggering energy cost. https://

numenta.com/blog/2022/05/24/ai-is-harming-our-planet. Accessed: 2022-11-11.

Nunes, L. (2021). Totally wired: Where could we go with a map of the brain? APS Observer, 34.

OpenAI (2018). Ai and compute. https://openai.com/blog/ai-and-compute/. Accessed:
2022-11-11.

Pagiamtzis, K. and Sheikholeslami, A. (2006). Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey. IEEE Journal of Solid-State Circuits, 41(3):712–727.

Park, J., Yu, T., Joshi, S., Maier, C., and Cauwenberghs, G. (2016). Hierarchical address event rout-
ing for reconfigurable large-scale neuromorphic systems. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–15.

Perniola, L., Olivo, P., and Nowak, E. (2018). Experimental investigation of 4-kb RRAM arrays
programming conditions suitable for TCAM. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26:2599–2607.

Ponulak, F. and Kasiński, A. (2010). Supervised learning in spiking neural networks with resume:
sequence learning, classification, and spike shifting. Neural Computation, 22(2):467–510.

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with population codes. Nature
Reviews Neuroscience, 1(2):125–132.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., and Indiveri, G.
(2015). A reconfigurable on-line learning spiking neuromorphic processor comprising 256
neurons and 128k synapses. Frontiers in neuroscience, 9:141.

https://numenta.com/blog/2022/05/24/ai-is-harming-our-planet
https://numenta.com/blog/2022/05/24/ai-is-harming-our-planet
https://openai.com/blog/ai-and-compute/

140 Bibliography

Rajendran, B., Cheek, R. W., Lastras, L. A., Franceschini, M. M., Breitwisch, M. J., Schrott, A. G.,
Li, J., Montoye, R. K., Chang, L., and Lam, C. (2011). Demonstration of cam and tcam using
phase change devices. In 2011 3rd IEEE International Memory Workshop (IMW), pages 1–4.
IEEE.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125.

Ranzato, M. and LeCun, Y. (2007). A sparse and locally shift invariant feature extractor applied
to document images. In Ninth International Conference on Document Analysis and Recognition
(ICDAR 2007), volume 2, pages 1213–1217. IEEE.

Rao, A., Plank, P., Wild, A., and Maass, W. (2022). A long short-term memory for AI applications
in spike-based neuromorphic hardware. Nature Machine Intelligence, 4(5):467–479.

Reid, A. T., Headley, D. B., Mill, R. D., Sanchez-Romero, R., Uddin, L. Q., Marinazzo, D., Lurie,
D. J., Valdés-Sosa, P. A., Hanson, S. J., Biswal, B. B., et al. (2019). Advancing functional connec-
tivity research from association to causation. Nature neuroscience, 22(11):1751–1760.

Ríos, C., Youngblood, N., Cheng, Z., Gallo, M. L., Pernice, W. H. P., Wright, C. D., Sebastian, A.,
and Bhaskaran, H. (2019). In-memory computing on a photonic platform. Science Advances,
5(2):eaau5759.

Risi, N., Calabrese, E., and Indiveri, G. (2021). Instantaneous stereo depth estimation of real-
world stimuli with a neuromorphic stereo-vision setup. In International Symposium on Circuits
and Systems, (ISCAS), pages 1–5. IEEE.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine intelligence with neuro-
morphic computing. Nature, 575(7784):607–617.

Rueckauer, B. and Delbruck, T. (2016). Evaluation of event-based algorithms for optical flow with
ground-truth from inertial measurement sensor. Frontiers in neuroscience, 10(176).

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification. Frontiers in
neuroscience, 11:682.

Sahu, P. K. and Chattopadhyay, S. (2013). A survey on application mapping strategies for network-
on-chip design. Journal of systems architecture, 59(1):60–76.

Sakurai, Y. (1996). Population coding by cell assemblies–what it really is in the brain. Neuroscience
research, 26(1):1–16.

Sangiovanni-Vincentelli, A. and Martin, G. (2001). Platform-based design and software design
methodology for embedded systems. IEEE Design & Test of computers, 18(6):23–33.

Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of pooling operations in convolutional
architectures for object recognition. In International conference on artificial neural networks,
pages 92–101. Springer.

Schmidhuber, J. (2014). Who invented backpropagation. More [DL2].

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85–
117.

Schmidhuber, J. (2022). Annotated history of modern ai and deep learning. arXiv preprint
arXiv:2212.11279.

Schultz, K. J. (1997). Content-addressable memory core cells a survey. Integration, 23(2):171–188.

Bibliography 141

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020). Memory devices
and applications for in-memory computing. Nature Nanotechnology, 15(7):529–544.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking neural
networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile com-
puting and communications review, 5(1):3–55.

Song, S., Balaji, A., Das, A., Kandasamy, N., and Shackleford, J. (2020). Compiling spiking neu-
ral networks to neuromorphic hardware. In The 21st ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pages 38–50.

Sporns, O. and Betzel, R. F. (2016). Modular brain networks. Annual review of psychology, 67:613.

Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pantazi, A., and Gerstner, W. (2022). An ex-
act mapping from relu networks to spiking neural networks. arXiv preprint arXiv:2212.12522.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and efficient neural
simulator. eLife, 8:e47314.

Titirsha, T. and Das, A. (2020). Thermal-aware compilation of spiking neural networks to neuro-
morphic hardware. In International Workshop on Languages and Compilers for Parallel Computing,
pages 134–150. Springer.

Titirsha, T., Song, S., Balaji, A., and Das, A. (2021). On the role of system software in energy man-
agement of neuromorphic computing. In Proceedings of the 18th ACM International Conference
on Computing Frontiers, pages 124–132.

Udvary, D., Harth, P., Macke, J. H., Hege, H.-C., de Kock, C. P., Sakmann, B., and Oberlaender, M.
(2020). A theory for the emergence of neocortical network architecture. BioRxiv.

Urgese, G., Barchi, F., Macii, E., and Acquaviva, A. (2016). Optimizing network traffic for spiking
neural network simulations on densely interconnected many-core neuromorphic platforms.
IEEE Transactions on Emerging Topics in Computing, 6(3):317–329.

van den Heuvel, M. P. and Sporns, O. (2013). Network hubs in the human brain. Trends in
cognitive sciences, 17(12):683–696.

Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen, L.-Y., Zhang, B., and Deaville, P. (2019).
In-memory computing: Advances and prospects. IEEE Solid-State Circuits Magazine, 11(3):43–
55.

Vincentelli, A. (2002). Platform-based design.

Vogelstein, R., Tenore, F., Philipp, R., Adlerstein, M., Goldberg, D., and Cauwenberghs (2003).
Spike timing-dependent plasticity in the address domain. In Advances in Neural Information
Processing Systems (NIPS), volume 15, pages 1171–1178, Cambridge, MA, USA. MIT Press.

Wallace, G. K. (1992). The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. nature,
393(6684):440–442.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560.

Witvliet, D., Mulcahy, B., Mitchell, J. K., Meirovitch, Y., Berger, D. R., Wu, Y., Liu, Y., Koh, W. X.,
Parvathala, R., Holmyard, D., et al. (2021). Connectomes across development reveal principles
of brain maturation. Nature, 596(7871):257–261.

Zamarreño-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., and Linares-Barranco, B.
(2012). Multicasting mesh aer: A scalable assembly approach for reconfigurable neuromorphic
structured aer systems. application to convnets. IEEE transactions on biomedical circuits and
systems, 7(1):82–102.

Zhang, J. and Tao, D. (2020). Empowering things with intelligence: a survey of the progress,
challenges, and opportunities in artificial intelligence of things. IEEE Internet of Things Journal,
8(10):7789–7817.

Zhang, K. and Sejnowski, T. J. (2000). A universal scaling law between gray matter and white
matter of cerebral cortex. Proceedings of the National Academy of Sciences, 97(10):5621–5626.

Zhang, W., Gao, B., Tang, J., Yao, P., Yu, S., Chang, M.-F., Yoo, H.-J., Qian, H., and Wu, H. (2020).
Neuro-inspired computing chips. Nature Electronics, 3:371–382.

Zheng, P., Tang, W., and Zhang, J. (2010). A simple method for designing efficient small-world
neural networks. Neural Networks, 23(2):155–159.

Zhu, X. and Klabjan, D. (2021). Continual neural network model retraining. In 2021 IEEE Inter-
national Conference on Big Data (Big Data), pages 1163–1171. IEEE.

Institute of Neuroinformatics
Prof. Dr. Giacomo Indiveri

Title of work:

Brain-Inspired Placement and Routing for Neuromor-
phic Processors

Thesis type and date:

Ph.D. Thesis, April 2023

Supervision:

Prof. Dr. Giacomo Indiveri

Student:

Name: Vanessa Rodrigues Coelho Leite
E-mail: vanessa@ini.uzh.ch

